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Does the Choice of Deep Learning Architecture Matter?
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* Deep Learning-based models are becoming
widely used for target segmentation

* Five commonly-used architectures selected as
* However there is little consensus on optimal base models
training parameters * Deeplab v3+!
* D-LinkNet?

* VGG-19 + U-Net style decoder?
* U-Net?

. i - 5
* Extensively evaluate deep learning architectures Residual U-Net

commonly used for medical image segmentation o
* Hyperparameter variations:

* Determine appropriate model choice for target * Learning rate: 0.01, 0.001, 0.0001

segmentation tasks o
* Input normalizations

P . * /Z-score
* |dentify influence of a wide range of D i ,
. . * Minimum-maximum value cropping
hyperparameter and the optimal choices L

METHODS » Additional variations for U-Net and Residual U-Net
* Network depth: 3, 4, 5, and 6 levels
. * Convolution kernel size: 3x3 and 5x5
Data curatlon * First-level features: 16, 32, 48, and 64
* Four-field box female pelvis cases (n=310) o o
Tralning

* Models trained to delineate radiotherapy field « Total of 1295 unique models trained and

ARSFLLSS evaluated
* 23,000 computing hours

* 2D anterior-posterior (AP), posterior-anterior (PA)
and lateral DRRs

Evaluation Metrics

* 229 training and 26 validation cases

* Dice similarity coefficient (DSC)
* 55 cases never seen by models during training and

reserved for final evaluations
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» Composite of 5 overlap and distance scores®

All models except VGG-19 achieved similar top
DSC and composite scores

Learning rate of 0.001 or lower was observed to
be the most important hyperparameter
contributed to good model convergence and
performance

Z-score intensity normalization similarly
contributed to best model performance

When evaluating model robustness using 25t
percentile DSC and composite scores, these
models performed best:

* Deeplab v3+

* Residual U-Net

Model training time before convergence varied
greatly for best models

* > 20 hours for Deeplab v3+

* 24 - 60 hours for Residual U-Net

Table 1: Model variations and
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Figure 1: Distribution of 20% highest scores (DSC and composite) for all
architecture variations evaluated. While all architectures were able to
achieve similar best values, DeepLabv3+ and Residual U-Net with 5x5
kernel were most robust to initial hyperparameter selection.

Model Variations

(kernel size)

Deeplab v3+
performance. Maximum score )
represents best performance D-LinkNet
for each architecture. 25t U-Net
percentile represents relative U-Net + PRelU

sensitivity to initial

VGG-19 + U-Net

hyperparameters

Residual U-Net (3x3)
Residual U-Net (5x5)
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» Given appropriate, model-specific
hyperparameters, most commonly-
used models can approach
acceptable convergence

* Too-high learning rate was the single
largest contributor to poor model
performance

* Residual U-Net was overall best for
our dataset but much slower to
training than similar-performing
Deeplab v3+
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