INTRODUCTION

Rapid development in precision radiation therapy dramatically increases the
demands for accurate and efficient pre-treatment dosimetric verification.
Currently, electronic portal imaging device (EPID) is commonly used for the
application due to its high-resolution characteristics and ease of use.
However, EPID dosimetry solution does not provide in-phantom dosimetric
information and are not available in certain clinical treatment systems. Here,
we propose a dose verification method using a camera-based
radioluminescence imaging system (CRIS) combined with a deep learning-
based signal processing technique. The CRIS consists of a cylindrical
chamber coated with scintillator material on the inner surface of the
cylinder, coupled with a hemispherical mirror and a digital camera at two
ends. After training, the deep learning model was used for image-to-dose
conversion to provide dose prediction at multiple depths from a single CRIS
image.

AlM

1, Develop the first volumetric camera-based radioluminescence imaging
system for co-planar radiation beam detection

2, Investigate a deep-learning-based image-dose conversion approach to
offer water-based dose at different depths.

3, Demonstrate the performance of developed system for clinical application
on IMRT treatment plans.

METHOD

1. Design of radioluminescence imaging system
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Fig. 1 (a) Schematic diagram of the developed CRIS phantom, and (b) experimental setup.
The system consists of a cylindrical receptor with its inner surface coated with scintillator, a
hemispheric mirror mounted at the cylinder end and a camera at the opposite end to capture
the luminescence signals from the inner surface of the cylinder. The main dimensions are

indicated in unit of millimeter. Hardware design of the radioluminescence

imaging system is shown in Figure 1. The inner
surface of a 3D printed cylindrical chamber is
coated with a Gd,0,5-based scintillator material,
which emits 545nm light upon interaction with
Comens exvaction the megavoltage (MV) photons [1,2]. The system
was sequentially calibrated to compensate for any
geometric restoration, dark-field and flood-field
corrections. To perform image restoration, a
chessboard was overlaid to the scintillator sheet
and the captured scintillation image was used to
extract deformable field for the subsequent affine
transform. A diagram showing the calibration
process is presented in Fig. 4. Calibrated images
still suffer from the blurring and mirror-glare
issues caused by light scattering, which will be
mitigated using the deep learning model.
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Fig. 2. Diagram showing the
calibration procedure of CRIS image.
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2. Deep learning model for image-dose conversion

Figure 3 shows the pipeline of the proposed fGAN, which takes advantages of the powerful adversarial learning mechanism in the prediction of dose maps. While dose maps at different depths are deemed to belong to different image domains, our goal is to train a single
network that learns a one-to-many demain translation. In brief, the architecture consists of two identical generators (G, and G, ) and two discriminators (D, and D, ). G, takes input from both radioluminescence image and target domain labels (c,,) to synthesize dose maps at
multiple depths. By passing a predicted dose map and the corresponding source label (cy) into G, a radioluminescence image is reconstructed and used to formulate a cycle consistency loss. In fact, an identical G is used for both G, and G,. Meanwhile, the discriminators
play dual roles: a real/fake identifier and a domain classifier. An identical discriminator (D) is employed for both D; and D;.

Functional GAN (fGAN) Generator (G) + Loss functions

In fGAN, there are three loss functions involved: a perceptual adversarial loss L, a classification loss L, and a cycle consistency loss L.,
the total objective is
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where 4.5 and A, are hyper parameters that balance the contributions from classification loss and consistency loss, respectively.
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A LINAC (Varian Clinac 2100 CD, Varian Medical Systems, USA) equipped with Millennium MLC was used
for all the experiments with photon energy of 6 MV and dose rate of 600 monitor units per minute
(MU/min). Dose calculations were conducted in the Eclipse™ (Varian Medical Systems, Palo Alto,
California) using the anisotropic analytical algorithm (version 15.6.05). The calculation was performed
on a cubic water phantom (45 x 45 x 45 cm?) constructed in the TPS with a source-to-surface distance o u m a s a2
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The training dataset is composed of 58 shapes (see Fig. 4). The measurement was taken for multiple Fig. 4 Training dataset includes MLC-defined (a)
collimator rotations ranging from 0° to 180° at a step size of 15°. That is, at 12 MLC rotations angles, 12 x Fffwra" and (b) W_mb'-"::ke fields. The two designs are
58 images were taken in all. The gantry angle was fixed to 0° during the data collection process, Dose :gi;Lﬁd;z;"e:ég::gg’;i’;ﬁfg;;if’;g::ﬂzgafgg
:‘vas ;alculated in TPS at the depth of 1.5cm, 5em and 10cm, and the model was trained for the three collected by using the CRIS.

epths.
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Fig. 3 The architecture of the proposed fGAN, consisting of two identical generators (G; and G;) and two
identical discriminators (D, and D,). G, takes input from both radioluminescence image x and a target domain
label vector (c,|n>0) to a synthesize dose map at a desirable depth, i.e., G, (x,c,). By passing a predicted target
image and a source domain label ¢, into G, the source image is reconstructed, i.e., G, (G, (x, ¢,), ¢3) and used
to formulate a cycle consistency loss L.y.. The discriminators play dual roles: (1) a real/fake identifier, which
contributes to L4, and (2) a domain classifier to evaluate the similarity between the predicted dose map and
the ground truth at every depth, which contributesto L.

RESULTS

Dose maps were predicted and verified for 1.5 cm, 5 cm and 10 cm depths in water. The test dataset consists of regular fields and a clinical IMRT case. The regular fields include a set of square fields: 2x2 cm?, 4x4 cm?, 6x6 cm?, 8x8 cm? and 10x10
cm?, The clinical prostate case contains seven fields with a total of seventy-seven segments. The predicted dose maps were evaluated by comparing to the corresponding TPS calculations in terms of gamma index (Y). The gamma passing rates were
calculated (Y,,,,) using gamma criteria of 1% (global intensity) /1 mm (distance-to-agreement) and 2%/2 mm with a low-dose cut-off threshold value of 10%.

1. Dose prediction for regular fields
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profiles along the yellow dashed line in (a), and (e) gamma map of the prediction (2% / 2mm).

Images are displayed in logscale.

Figure 5 shows an example of 6x6cm? field. The images are displayed in log-scale to reveal the details in the penumbra regions. In this case, the mirror-glare artifacts can be observed on top of radioluminescence images, as indicated with a red arrow in
Fig. 5(a). In the cross-beam profiles shown in Fig. 5(d), the artifacts lead to a 10% deviation relative to the maximum dose. These artifacts are eliminated in the predicted dose map (Fig. 5(b)), which has a 100% Y, (2% / 2mm) as shown in Fig. 5(e) (Y<1
for all the pixels). More quantitative analysis on fields of 2x2 cm?, 4x4 cm?, 6x6 cm?, 8x8 cm? and 10x10 cm? with depths of 1.5 cm and 10 cm are listed in tables I. All Y, reach 100% with 2% / 2mm criteria and exceed 99% for more stringent 1% /
1mm. In comparison, the raw images have mean 7, of 80.5% (2% / 2mm) and 61.9% (1% / 1mm) for depth of 1.5 cm, and 87.6% (2% / 2mm) and 60.7% (1% / 1mm) for depth of 10 cm. Toass IN the raw data are found inversely related to the field size.
For example, the mean 7, (2%/2mm) is 99.0% for 2 x 2 cm? and reduces to only 47.3%in 10 x 10 cm?.

2. Dose prediction for a prostate IMRT case Table Il Gamma analysis for prostate IMRT fields.
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Fig. 6. Dose prediction for a prostate IMRT case (Field 7) at a water depth of 10 cm. (a) The
input radioluminescence image collected from our CRIS, (b) predicted dose map, (c) TPS
calculation, (d) intensity profiles along the yellow dashed line in (a), and () gamma map of the
prediction (2% /2mm). Images are displayed in logscale.
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We further investigated a prostate IMRT treatment plan delivered at the gantry angle fixed to 0°, which includes 7 fields with a total of 77 step-and-shot segments. As an example, the predicted dose of the last field at a depth of 10cm is presented in
Fig. 6. The mirror-glare artifacts indicated with a red arrow are visible in the position close to that in Fig. 5(a), accounting for a profile deviation of 4% as shown in Fig. 6(d). Figure 6(d) shows the gamma map using 2%/2mm criterion, where moderate
deviations on Y (~0.5) can be found in the low-dose regions surrounding the primary beam. By checking the settings in TPS, these regions are mostly covered by the secondary collimator jaws. The quantitative results of the prostate IMRT plan with 1%/1
mm and 2%/2 mm gamma criteria are summarized in Table Il for depths of 1.5 cm and 10 cm. The mean 7, for the seven fields are 88.9% (1% / 1mm) and 99.2% (2% / 2mm) for a depth of 1.5 cm, and 84.6% (1% / 1mm) and 98.7% (2% / 2mm) for a
depth of 10 cm. No significant differences were observed on 1. (2%/2mm) among the seven fields with multiple segments and the open fields in table I.
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CONCLUSIONS

In this work, we developed a radioluminescence imaging system and a dose
prediction strategy that converts the measured radioluminescence image to
dose maps using a flexible deep learning model. Leveraged from the
cylindrical receptor structure, our system allows for dosimetric measurement
from any gantry angle. The proposed deep learning model enables robust
domain transformation from CRIS image to dose maps at multiple depths,
which makes it possible to predict 3D dose distribution. The proposed fGAN
model outperforms other state-of-the-arts deep learning models in this
specific application. Validation experiments were performed for five square
fields (ranging from 2 x 2 cm2 to 10 x 10 cm?@), and a clinical prostate IMRT
case (total of 77 step-and-shoot segments). The results were compared to
the TPS calculations in terms of gamma index at 1.5 ¢cm, 5 cm and 10 cm
depths. The mean 2% / 2mm gamma pass rates were 100% for square fields
and 98.3% (range from 97.5% to 99.5%) for the irregular IMRT fields. The
system is demonstrated to be a promising and cost-effective alternative to
the current EPID-based dosimetry.
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