%\Q\)AL\TY fn%% ‘ ‘, Al
JULY 1216 gb ) %% NC T
2020° . - s VIRTUAL

n-"’

JOINT AAPM \BUMP MEETING

EASTERN TIME [GMT-4]

a‘mj’.‘raa

-.‘
||
—_—-..-\l

q "“ Iv 4-,* as, Texas

|ng -based framework fon segmentmg CTV with estimated M AI A

S for post-operative prostate cancer radiotherapy

A Nguyen, Howard Morgan, Yaochung Weng, Michael Dohopolski, Mu-Han Lin, Azar Sadeghnejad
a Gonzalez, Aurelie Garant, Neil(Desai, Raquibul Hannanj Steve Jiang* UT Southwestern
ligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center

ﬁm\

ou western edu

INTRODUCTION: post-operative radiotherapy for prostate

cancer, precisely contouring the clinical target volume (CTV) to be irradiated
is challenging, because the cancerous prostate gland has been surgically
removed, so the CTV encompasses the microscopic spread of tumor cells,
which cannot be visualized in clinical images like computed tomography or
magnetic resonance imaging. In current clinical practice, physicians segment
CTVs manually based on their relationship with nearby organs and other
clinical information, but this allows large inter-physician variability.
Automating post-operative prostate CTV segmentation with traditional
image segmentation methods has yielded suboptimal results. We propose
using deep learning to accurately segment post-operative prostate CTVs.

METHODS: Athree stage network is proposed. CTV and OAR volumes

are localized and cropped from the original CT images through a 2D

localization network; OARs are segmented individually by separate 3D

segmentation networks; and CTV is segmented by a dedicated 3D

segmentation network that takes the localized CTV volume and segmented

bladder and rectum as inputs.

* The model proposed is trained using labels clinically approved and used
for patient treatment.

* To segment the CTV, we segment nearby organs first, then use their
relationship with the CTV to assist CTV segmentation.

* To make the DL model practical for clinical use, Monte Carlo dropout[1] is
leveraged to give physicians the 95% confidence bounds together with

a_the predicted mean contours.
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RESU LTS = The model achieves an average Dice similarity coefficient (DSC) of 0.87 on a holdout test dataset, better than established methods, such as atlas-based methods
(DSC<0.7). For each test patient, two out of five residents manually segmented the CTV with the assistance of pathology and MRI reports. We compared the DSC values between resident-
drawn contours and clinical contours with the DSC values between the model contours and clinical contours for all test patients. The model performance was observed to be statistically
superior. Experienced practicing physicians were presented, in a randomized and blinded way, with the model-predicted CTV contour and the clinical CTV contour, side by side.

These physicians, with the assistance of pathology reports, reviewed and scored the contours according to a 4-point grading system:

* 4 - acceptable without changes, 3 - acceptable with minor changes, 2 - acceptable with major changes, and 1 - completely unacceptable.

* Half of the patients were evaluated by their respective original treating physicians(same-observer evaluation), and the rest were evaluated by a physician who was not involved in the

original treatment(Different-observer evaluation).

DSC(%) ASD(mm)
Structure Mean + 5D
Cctv 86.8+4.9 1.57+ .46
Bladder 95.4+6.8 1.02+£.35
Rectum 90.2+£2.3 1.35+£.56
Penile Bulb 77.4+7.3 1.70 £ .67
Left Fem Head 96.0£ 2.0 0.98+ .24
Right Fem Head 958+1.8 111+ .23
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Figure 1: Quantitative evaluation of the predicted CTV and
OAR contours against the clinical contours. Top, Mean
values and standard deviations of Dice similarity coefficient
(DSC) and average surface distance (ASD); Bottom, Violin
plots of DSC values

Inferior

Middle

Superior

Laboratory

Radiation Oncology

M Clinical contour B Model mean prediction ] 95% confidence band

[LEET Variance p-value

Model DSC 86.88% 0.17%
Avg Resident DSC 79.56% 0.35% 1.21x 10"
Max Resident DSC 81.75% 0.32% 1.82x10°
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Figure 2: Visualization of the clinical CTV contours (red) and the

predicted mean CTV contours (blue) with 95% confidence bounds Figure 3: Top. The mean and variance of DSC values of the model-
(vellow) in axial CT images at three representative anatomical predicted CTV contours, the average of the two residents, and the
locations (top row - inferior, middle row — middle, and bottom better of the two residents for each patient, Bottom: Summary of
row — superior) for four example testing patients (each column the evaluation of clinical acceptability using a 4-point grading

corresponding to one patient). system. None of the contours received a score below 2.

learning produced tumor segmentation.

CONCLUSIONS : in this work, we have designed and

implemented a deep learning based framework that can segment
invisible clinical tumor volumes on computed tomography images
for post-operative prostate cancer radiation therapy. Uncertainty
associated with the deep learning model is estimated , enabling the
visualization of areas of large variability which would help
physicians make informed and efficient corrections to the deep

REFERENCES

1. Y. Gal and Z. Ghahramani. Dropout as a bayesian
approximation: Representing model uncertainty in
deep learning. In international conference on
machine learning, pages 1050— 1059, 2016.



http://www.tcpdf.org

