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1. MOTIVATION

» Proton radiotherapy (PT) Offers comparable
effectiveness to photon radiotherapy but with less
toxicity!:2,

» PT effectiveness requires accurate knowledge of Bragg
peak fall-off at the end of the proton-beam range so
SOBP falloff can be accurately aligned with the Clinical
Target Volume (CTV) distal boundary.

» Previously, we demonstrated that our 2D Joint
Statistical Image Reconstruction code using a basis-
vector cross-section model (JSIR-BVM) more
accurately maps stopping power ratios (SPR) and better
suppresses noise than competing image- and sinogram-
domain dual-energy CT (DECT)?4.
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» Goals: (1) eliminate up to 2/3 of range uncertainty il |b o 4l

(currently 2-3.5%) in current clinical practice. (2) Make
JSIR-BVM clinically feasible for PT planning.

» Clinical feasibility requires that JSIR-BVM be
extended to 3D image reconstruction from helical
sinograms in areasonable time. To this end, we herein
(1) present our GPU-based 3D JSIR-BVM
reconstruction engine and (2) quantitatively assess its
performance on simulated and experimentally acquired
helical sinograms for phantom and patient scan subjects.
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2. JSIR-BVM RECONSTRUCTION

» 3D JSIR-BVM: Reconstruct 3D CT images of polystyrene and CaCl, solution basis-material weights.
¢,(x) and cx) from 90 kVp and 140 kVp sequentially acquired polyenergetic helical transmission
sinograms, d;(y), by solving a penalized maximum likelihood estimation (MLE) problem>5.

ose
2% feore eow sew 100

SOBP region

{12 proten beams)
|

#2

Entrance
Dose

tumor

» Transmission sinograms are independently Poisson distributed
random variables with means

Q; i) = Iy @)Z,f,j (. ) e~ B iy cui® 4y ),
E
where y; are the linear attenuation coefficients of each base
material, Y;(y, E) denotes the j-th photon spectrum, and y;(y) the
scattered-photon sinogram.

» Use MLE to find (c(x), c,(x)) that minimizes the I-divergence
between measured and predicted sinograms’
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3D ISIR-BVM
» BVM weights are used to derive pixel-wise estimates of electron

density, (x), and mean excitation energy, (x) 3¢.
» For example, Electron Density = g, (x) = ¢;(x)pes +
€ (X)pe2 ()
» Estimate stopping powcr using simp]iﬁcd Bethe-Bloch Equation.
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3. GPU ARCHITECTURE
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Our GPU code uses branchless distance-driven forward and back-proejectors.
Projected values are weighted based on the intersection volume between rays and
image voxels. Each iteration requires 4 forward- and 8 back-projections, accounting
for ~90% of the total elapsed time. Deformable image registration is introduced to
address possible organ motion between the sequentially acquired 90 and 140 kVp
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Fig 4.2 SPR image of helical
experimental scans reconstructed
using 3D helical JSIR-BVM.

SPR Errar Helical vs Axial

-_Fig 4.1 Experimental setup
of helical scans
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Fig 4.3 Percent error between reconstructed SPR values in an
insert’s 24 mm ROT and SPR values calculated from substances

Category Material

Density
(g/ml.)

Compaosition

SPR

0.998
0.788
0.789
0.803
0.807

Water H,O
GH;0
CoH-OH
C;H,OH
CLILOTT

Acetone
lithanol
n-Propanol

n-Butanol

1.000
0.7%

0.820)

Calegory

Material Composition Depsily  SPR

(g/mL)

0.841
0.848

CaCl-1
CaCl-2
CaCl-3
KP-1
KP-2
KP-3
KP-4

CaCl,(7.20%)
CaCly18.24%)
CaCly(23.07%)
K,HPO(9.37%)
KALIPO17.17%)
KHPO,(29.26%)
K,HPQ,(45.21%)

1,032
1.153
1.202
1.075
1.149
1.273
1.467

1.037
1.110

Watcr H,0
CILOII

C:H;OH

0.997
0.788
0.803

1.000
0.820
0.840

Ethanol
n-Propanol
0.847

n-Butancl  C,H,OH 0.807

1.144
1.058
1.114
1.206

KP-1 KHPOL10.26%)  1.086 1.068

Kp-2 KHPOL(20.81%) 1180 1146

KP-3 KGITPO{28.96%) 1,273 [.207

KP4 KHPOL(34.64%) 1336 1253

1.346

‘ Known properties of simulated inserts.

Known properties of experimental
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Fig 4.4 SPR image of simulated helical
scans with 100% relative source intensity
reconstructed using 3D JSIR-BVM.

%)gal and Helical JSIR-BVM SPR Estimation Error

o Axial Mean Error(%)
¢ Helical Mean Error{%}
Axial RMS Average Error{%)}
* Helical RMS Average Error(%)

. . :
s 5 k

§ | a

o
Noiseless 200% 100% 50%
Relative Source Intensity

Fig 4.5 (a)

Fig 4.5 (a) Mean and RMS average error
between reconstructed SPR and ground
truth for 3D helical and 2D axial JSIR-
BVM reconstructions of simulated scans
for different noise levels. Mean errors are | £
averaged over the insert 24 mm ROI
pixels. RMS average error is the average
of the insert RMS errors.

Fig 4.5 (b) Mean (data point) and
standard deviation (bars) of percent
error between reconstructed SPR values
from noiseless simulated helical scans in
an insert's 24 mm ROT and SPR values
calculated using substance’s known
densities and compositions®.
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Elapsed Time

Time per Time to
Treration Solurion
(s) (hour)

Single-threaded CPU 2797

-
s (Predicted)

20-threaded C'P1J 602

0| Predicted)

4 GPUs 2 18

GI'U + Initial Guess + 56 15
33 Ordered Subsets

GPL + Inftial Guess +
33 Ordered Subsels +
Accelerated DEAM with
spatially decoupled
surrogate function®

3D JSIR-BVM is implemented
on a computer equipped with
Intel Xeon E5 2630-v4, 128
GB/2400MHz memory and 4
GeForce GTX 1080 Ti. Test
measured data size; 10560 x
816 x 16. Test reconstructed
image size: 610 X 610 x 42,
Details on implemented
Accelerated DEAM method
can be found in Zhang’,
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Fig4.6 Shces 55 (Lefr) and 70 (center) from the reconstructed 3D SPR map of a brain tumor patient. (Right) Profiles through both slices SPR maps showing a mean SPR of 1.0 for cerebral tissue. Benchmark
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5. CONCLUSIONS

» To our knowledge, 3D JSIR-BVM!? is the first SIR algorithm that directly reconstructs 3D SPR
maps by simultancously operating on experimentally-acquired, energy-uncompensated helical CT
sinograms.

» We demonstrated its accuracy against experimental benchmarks, simulated ground truth, and SPR
maps predicted by our 2D axial JSIR-BVM code.

» We were able to show early results of 3D SPR maps reconstructed from patient serial 90 and 140
kVp dual-energy, helical-CT scans acquired on a 16-slice Philips Big Bore Brilliance scanner.

Future work

» Studies must be performed to analyze inter- and intra-patient variabilities in SPR estimates and the
susceptibility of our algorithm to errors in heterogeneous tissue with features smaller than an image
voxel size.

» Further speed up our current method in order to do a full spiral reconstruction within a clinically
acceptable time of 20 minutes.

» Mitigate effects of scatter in clinically realistic beam collimations, Unlike previous experiments in
which axial scans could be acquired at the narrowest collimation, helical scans can only be obtained
at 12 or 24 mm beam collimations which can be significantly affected by scatter.
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