## THE UNIVERSITY OF TEXAS MD Anderson Cancer Center

Making Cancer History®

# Prognostic Value of Imaging-Based Estimates of Glioma Pathology Pre- and Post-Surgery

E. GATES<sup>1,2</sup>, D. SUKI<sup>3</sup>, J. WEINBERG<sup>3</sup>, S. PRABHU<sup>3</sup>, D. FUENTES<sup>1</sup>, AND D. SCHELLINGERHOUT<sup>4</sup>

- 1. Department of Imaging Physics, University of Texas MD Anderson Cancer Center,
- 2. The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences
- 3. Department of Neurosurgery, University of Texas MD Anderson Cancer Center
- 4. Departments of Neuroradiology and Cancer Systems Imaging, University of Texas MD Anderson Cancer Center



## INTRODUCTION

**Any** high grade tumor present within a glioma causes poor prognosis.

This project has two main goals:

- 1) Estimate the **local** proliferative activity in gliomas.
- 2) Show resecting highly proliferative tumor improves survival

Hypothesis: Removing highly proliferative tumor will improve overall survival



Figure 1: Predicted maps of proliferative activity in a glioma

## MODEL APPLIED TO NEW PATIENTS

Biomarker generalization in two independent patient cohorts:

- 1. 140 high-grade glioma cases from the 2018 BraTS challenge<sup>2</sup>
- 2. 68 previously untreated high-grade glioma patients from MD Anderson

Table 1: Groups of patients used in this study.

|                                 | 23 glioma patients in the original clinical trial | 1. BraTS challenge cases                                      | 2. Historical cases                                          |
|---------------------------------|---------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|
| Image guided<br>tissue biopsies | <b>√</b>                                          | X                                                             | X                                                            |
| Preoperative<br>MRI             | 1                                                 |                                                               | <b>√</b>                                                     |
| Postoperative<br>MRI            | <b>√</b>                                          | X                                                             | <b>√</b>                                                     |
| Outcome data                    | X                                                 | $\checkmark$                                                  | <b>V</b>                                                     |
| Analysis                        | Train proliferation prediction models             | Correlate preop<br>proliferation predictions<br>with survival | Measure benefit from<br>removing high<br>proliferation tumor |

## **SURVIVAL RESULTS**

Highly proliferative tumor was defined as: >28.2% Ki-67 (cohort 1) and >24.75% Ki-67 (cohort 2).

**Any** high proliferation preop or postop led to worse survival.



Figure 2: Survival curves for BraTS cases (A) and historical cases (B, C)

## yes Medium Low risk High risk

## PROLIFERATION PREDICTING MODEL<sup>1</sup>

# Imaging (input)

Data contains preoperative MRI and biopsy sample coordinates.

## Proliferation (output)



Proliferation index is the fraction of cells expressing Ki-67

## Random Forest



Biopsy level predictions are within 5.4 percentage points.

## **CONCLUSIONS**

- We can predict highly proliferative tumor using routine brain MRI.
- Targeting highly proliferative tumor improves overall survival and is more focused than reducing bulk tumor volume.

## **FUTURE WORK**



Figure 3: Proliferative activity maps can be generated from routine MR imaging and integrated into the PACS system for surgical planning and guidance.

## **ACKNOWLEDGEMENTS**

E. Gates is supported by the NLM Training Program in Biomedical Informatics and Data Science, T15LM007093

Some data for this work have been obtained through a search of the integrated multidisciplinary Brain and Spine Center Database. The Brain and Spine Center Database was supported in part, by an institutional M. D. Anderson database

CONTACT: General Education Education Education (CONTACT: General Education E





## REFERENCES

- 1. Gates, E. D. H., Lin, J. S., Weinberg, J. S., et. al., "Guiding the first biopsy in glioma patients using estimated Ki-67 maps derived from MRI: conventional versus advanced imaging," Neuro. Oncol. 21(4), 527-536 (2019).
- 2. Menze, B. H., Jakab, A., Bauer, S., et. al., "The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)," IEEE Trans. Med. Imaging 34(10), 1993-2024