THE UNIVERSITY OF TEXAS MD Anderson Cancer Center Making Cancer History® # Prognostic Value of Imaging-Based Estimates of Glioma Pathology Pre- and Post-Surgery E. GATES^{1,2}, D. SUKI³, J. WEINBERG³, S. PRABHU³, D. FUENTES¹, AND D. SCHELLINGERHOUT⁴ - 1. Department of Imaging Physics, University of Texas MD Anderson Cancer Center, - 2. The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences - 3. Department of Neurosurgery, University of Texas MD Anderson Cancer Center - 4. Departments of Neuroradiology and Cancer Systems Imaging, University of Texas MD Anderson Cancer Center ## INTRODUCTION **Any** high grade tumor present within a glioma causes poor prognosis. This project has two main goals: - 1) Estimate the **local** proliferative activity in gliomas. - 2) Show resecting highly proliferative tumor improves survival Hypothesis: Removing highly proliferative tumor will improve overall survival Figure 1: Predicted maps of proliferative activity in a glioma ## MODEL APPLIED TO NEW PATIENTS Biomarker generalization in two independent patient cohorts: - 1. 140 high-grade glioma cases from the 2018 BraTS challenge² - 2. 68 previously untreated high-grade glioma patients from MD Anderson Table 1: Groups of patients used in this study. | | 23 glioma patients in the original clinical trial | 1. BraTS challenge cases | 2. Historical cases | |---------------------------------|---|---|--| | Image guided
tissue biopsies | √ | X | X | | Preoperative
MRI | 1 | | √ | | Postoperative
MRI | √ | X | √ | | Outcome data | X | \checkmark | V | | Analysis | Train proliferation prediction models | Correlate preop
proliferation predictions
with survival | Measure benefit from
removing high
proliferation tumor | ## **SURVIVAL RESULTS** Highly proliferative tumor was defined as: >28.2% Ki-67 (cohort 1) and >24.75% Ki-67 (cohort 2). **Any** high proliferation preop or postop led to worse survival. Figure 2: Survival curves for BraTS cases (A) and historical cases (B, C) ## yes Medium Low risk High risk ## PROLIFERATION PREDICTING MODEL¹ # Imaging (input) Data contains preoperative MRI and biopsy sample coordinates. ## Proliferation (output) Proliferation index is the fraction of cells expressing Ki-67 ## Random Forest Biopsy level predictions are within 5.4 percentage points. ## **CONCLUSIONS** - We can predict highly proliferative tumor using routine brain MRI. - Targeting highly proliferative tumor improves overall survival and is more focused than reducing bulk tumor volume. ## **FUTURE WORK** Figure 3: Proliferative activity maps can be generated from routine MR imaging and integrated into the PACS system for surgical planning and guidance. ## **ACKNOWLEDGEMENTS** E. Gates is supported by the NLM Training Program in Biomedical Informatics and Data Science, T15LM007093 Some data for this work have been obtained through a search of the integrated multidisciplinary Brain and Spine Center Database. The Brain and Spine Center Database was supported in part, by an institutional M. D. Anderson database CONTACT: General Education Education Education (CONTACT: General Education E ## REFERENCES - 1. Gates, E. D. H., Lin, J. S., Weinberg, J. S., et. al., "Guiding the first biopsy in glioma patients using estimated Ki-67 maps derived from MRI: conventional versus advanced imaging," Neuro. Oncol. 21(4), 527-536 (2019). - 2. Menze, B. H., Jakab, A., Bauer, S., et. al., "The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)," IEEE Trans. Med. Imaging 34(10), 1993-2024