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INTRODUCTION

To investigate the motion correlation between the internal diaphragm
and the external abdominal surface. Then use the surface displacement
to predict the diaphragm displacement in real-time.

METHODS

The method includes two stages (as shown in Figure 1): (1) Location
measurement based on 3D segmentation; (2) Two-step mapping algorithm.
In (1), we perform a threshold segmentation on the 4D CT images to obtain
three categories: the lungs, the body, and the background area. Considering
the diaphragm being just under the lungs and moving synchronously with
the underneath boundary of the lungs, we treat the underneath boundary of
lungs as the alternatives of diaphragm. A rectangular region of the
abdominal surface are used to represent the abdominal surface, since the
area on the two sides of abdominal surface has unstable and irregular
movement by experience observer. The mass center is computed to
represent the diaphragm and the abdominal surface, and the displacement x
and y between two phases for every patient can be further obtained. Since
different patients have various organs and the corresponding movement, we
perform linear normalization on x and y in the preprocessing step.

The two anatomical organs move differently, which results in the data with
different distribution structures. To solve the cross-domain prediction
problem, instead of directly performing prediction in original spaces, we first
utilize PCA (Principal Component Analysis) to project the two kinds of data
into corresponding eigenspaces, which can reduce the data’s redundancy
and capture its essential characteristics. Then, a subspace mapping is
optimized to obtain a linear transformation matrix g as below.

. 2
argm,;n{lly — B[, + AlpII3) (1)
The closed form for Equation (1) can be obtained as below:
BoPt = (xTx + A xTy (2)

When new data x,.,, of abdominal surface is input, we can first project them
into its eigenspace by PCA and then map them to the diaphragm’s
corresponding eigenspace using y.., = x1.,,B°Pt. At last, the prediction can
be obtained by reverse projection by PCA.
In order to investigate the non-linear correlation between the displacement
of the diaphragm and the abdominal surface, TSSM is further extended to
kernel TSSM (kTSSM), which optimization function can be written as:
argmjn {[ly - o078, + MBI} (3)
where ¢ is a nonlinear mapping function. Using kernel trick, we can directly
obtained the prediction in eigenspace as below:

Veest = K(X¢est, ) (K(x,x) + ;”)_1)’ (4)
where K(x,y) = {(¢$(x),¢(y)) is the kernel function and in this study the
polynomial kernel and Gaussian kernel are adopted. The simple closed form
for the optimization algorithm leads to an extremely fast algorithm, which
has potential for improving the accuracy of dose calculation in real-time.
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Diaphragm
- , RESULTS
R2 MAPE MSE R2 MAPE

linear model [1] [ 0.90 25.93 0.25 0.83 74.09
inear mode (0.46) (0.48) (75.60) (0.23) (0.14) (1.09e+03)

3D image

segmentation TSSM (linear) 0.06 0.93 23.68 0.22 0.87 56.60
Displacement Magig (0.02) (0.02) (22.43) (0.10) (0.05) (1.86e+03)
of diaphragm matrix KTSSM 0.05 0.93 26.76 0.14 0.90 55.50
S sy = (polynomial) (0.02) (0.02) (22.47) (0.07) (0.04) (490.47)

surface Q] :
PR — kTSSM 0.08 0.92 19.60 0.20 0.87 52.22
(Gaussian) (0.02) (0.02) (23.87) (0.08) (0.04) (307.15)
Table 1: Experiment results. For each metric of one algorithm, the upper value is the best result the
algorithm can obtain and the lower value in brackets is the standard deviation of 100 independent
runnings corresponding to the parameter configuration of the best result. For MSE and MAPE, we

record the minimum value, and for R2, we record the maximum value. For each column of the metric,
the best result of the four algorithm is emphasized with bold.
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Figure 1: Flowchart of the proposed method, which includes two stages: (1) Location measurement based on 3D segmentation;
(2) Two-step mapping algorithm. The first stage employs 3D image segmentation to accurately locate the diaphragm and the
abdominal surface. The correlation between the displacement of diaphragm and abdominal surface is investigated in the second
stage, which produces the mapping matrix.

In Table 1, four algorithms are compared, which are the linear model in
Reference [1], TSSM of linear model, and kTSSM with polynomial kernel and
Gaussian kernel. For each algorithm, we choose the best result of the metrics
and compute the standard deviation of 100 independent runnings

DATA AND EXPERIMENT corresponding to the parameter configuration of the best result. It can be

. - . . - - . noticed from Table 1 that the proposed algorithm outperform the state-of-the-
e Stgﬂ‘.’l’. ol “I‘esc:":!ca' ‘(';“as‘fts dacgﬂ"eg 4“"":. “‘te Philips 3”;"”."’9 CT thg B%e art linear model [1]. For the data without noise, KTSSM can reach the best
scanner (Philips Medical Solution, Cleveland, OH). 24 patients are used having each one 10- result especially for KTSSM with polynomial kernel, but TSSM can also perform
phase 4D CT series (0,10,---,90% of a mean respiratory cycle). No specific indication on how to

: A quite well and more stable than others. For the data with noise, the
breathe was given to the patients, but they were asked to breathe normally and regularly. performance of the non-linear kTSSM is much better than those of the linear

In experiments, 80% of samples are randomly chosen for model training and the rest samples are models. Based on the observation above, we can conclude the kTSSM with

for testing. In order to assess the sensitivity of the algorithms, Gaussian noise with ¢ = polynomial kernel can obtain the best performance for the displacement

{0.1,0.2, -, 0.5} are added to both the training data and the testing data. The parameter influence prediction of diaphragm according to the displacement of abdominal surface,

on the algorithm is also analyzed. For the regression optimization, 2 is picked up from but the TSSM of linear model is quite stable and enough to make such

{1071°,10-%,--,10'°} ; For Gaussian kernel, 0y, is equal to the reciprocal of prediction especially for the data without noise.

{0.1,0.2,0.4,0.6,0.8,1.6,3.2,6.4,12.8}; For the polynomial kernel K(x,y)= (wxTy+c)?, d=

{0.5,1,--,11}, ¢={-10,-9,---,10}, and w={-5-4.5,---,5}, which can guarantee fully

investigation of the correlation between the two cross-domain data. For each configuration of REFERENCES

parameters, we independently run the algorithm 100 time and obtain the statistic results. Parts of . . R ot . .

key results are as shown in Table 1. All the experiments are performed at the platform of Inter [1] K. T. Malinowski, et al, ..M't'gatmq errors in external respiratory surrogate-based
y " P P P models of tumor position,” International Journal of Radiation Oncology* Biology*

Xeon 3.6GHz, 32G memory, Windows 10 and Matlab R2019b. Physics, vol. 82, no. 5, pp. e709-e716, 2012

CONCLUSIONS 39 @

The markerless method based on 3D image segmentation can accurately locate the diaphragm and the abdominal
surface. The kKTSSM with polynomial kernel can obtain the best prediction performance, but the TSSM of linear
model is stable to make prediction, especially for the data without noise.
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