INTRODUCTION

Local recurrence (LR) is one of the dominant forms of treatment
failure for patients with advanced head and neck (H&N) cancer and
13-35% of patients will suffer from LR. Laryngeal cancer is the
second most common type of H&N cancer. Early prediction of LR
for the patients will help develop an individualized treatment to
minimize the risk and reliable prognostic biomarkers are needed. In
several radiomics prediction researches'®, the AUCs of LR
prediction were always the lowest on different patient cohorts when
compared with other endpoints, such as DM (distant metastases)
and OS (overall survival). So we took a closer look at the LR
prediction in this study. The average age of the cases of H&N
cancer is 65 and nearly half of the CT scans have artifacts caused
by metal dental implants in oropharynx*. The artifacts can induce
big changes in the commonly used texture features and worsen the
performance of radiomics modeling. According to these published
results of LR prediction and the studies of metal streak artifacts, the
prediction performance appears to be limited compared to the
acceptance criterion for eligibility (0.9). We did some deeper
analysis of all the steps including image analysis of the original CT,
delineation of the GTV contour, CNN model design and decision
strategy. Based on the analyzation result, we built a 2.5D transfer-
learning model (using the 2D slices for training and 3D images for
decision-making) for LR prediction of laryngeal cancer and
obtained an AUC higher than 0.91.

AIM

Most of the existing radiomics research of the head and neck
(H&N) cancer extracts quantitative features as prognostic factors to
predict the clinical endpoints. However, the prediction performance
of local recurrence (LR) is still challenging. We aimed to develop
and validate a 2.5 dimensional (2.5D) transfer learning-based
DCNN (Deep Convolutional Neural Network) model for local
recurrence (LR) prediction in laryngeal cancer.

METHOD

Atotal of 48 laryngeal cancer patients with pre-treatment Computed
Tomography (CT) from The Cancer Imaging Archive (TCIA) were
included in this study (LR=37, No LR=11). 403 2D patches derived
from the gross tumor volume (GTV) on the planning CT were
extracted and refined as the dataset for model training. Figure 1 is
the workflow of this research. All GTV contours are provided for the
CT scans based on PET images. Firstly, we extracted the primary
site with the GTV contours and refined the tumor region with image
processing methods. Secondly, we designed an LR and non-LR
classification model transferred from a CNN model pre-trained with
ImageNet and fine-tuned the model with our training data. Finally,
we tested the model with 5-folds cross-validation to evaluate the
performance of model. Details of the methods are described below.
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Figure 1 LR risk assessment workflow. The upper side of the workflow is processing of
CT images. The lower part is the design of the prediction model.

In previous experiments, we found that some of the GTV contours of the tumor
located in larynx have bones inside, while bones present high signal intensity in the
image and it becomes the noise for tumor parenchyma analysis. We defined the
laryngeal parenchyma as the homogeneous tissue region excluding the bone. We
also used z-score normalization and prepared images for the model training.

. Transfer a CNN model from VGG19 pre-trained on ImageNet, and fine-tune on the

tumor patches.

3. Use image augmentation and weighted loss function to address the data imbalance.
4. Combine a stack of 2D slices through a majority vote to provide the final prediction

for a given patient.

RESULTS

1.

Because most of the studies of H&N cancer outcome prediction includes tumors in
the larynx, and other H&N cancer regions, such as nasopharynx, oropharynx and
hypopharynx, it is hard to compare the proposed model with other state-of-the-art
impartially. However, it is also crucial to show that the prediction model for laryngeal
cancer works much better than the model mixing all types of cancers in H&N
together. Some of the related LR prediction metrics from related references are
shown in Table 1.

. We tested the model with a different type of input images, the segmented ROI

within GTV and the BoundingBox (BBOX). The results for using refined GTV as
input were better than using the BBOX for LR prediction, with the AUC of 0.91/0.64,
the sensitivity of 1/0.69, the specificity of 0.81/0.59 for refined GTV and BBOX,
respectively, as shown in Figure 2. Since the model with BBOX did not perform well
for 2.5D classification, we use refined GTV in this study.

Figure 3 is the Grad-CAM (Gradient-weighted Class Activation Mapping) of the
tumor. Red regions correspond to high scores for the class of LR. It shows us that
the surrounding parenchyma in the upper right and upper left corners (higher than
the removed bones) is not salient in the Grad-CAM. We can use the information to
propose new ROl refine strategies to constrain the input and optimize the prediction
model potentially.

Table 1 Comparison of LR prediction performance of models constructed for
laryngeal cancer with other combinations of variables in H&N cancer.
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Figure 2 Comparison of the prediction result with different input images. Testing
result of LR and no-LR prediction of laryngeal cancer with slices of ROl and slices
of BBOX. (a) Results of the five parallel experiments. (b) Average value of the five
parallel experiments.
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Figure 3 Normalized mput tumor patches and the Grad-CAM visualizations for the last
convolutional layer of our model. Patches are extracted from the same tumor.
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DISCUSSION

We admit there are still some limitations of this study. One is the defined GTV of the
primary site. We found that in this dataset from TCIA, more than 38% of the patients
had dental implant artifacts, and the primary site and lymph nodes were not separated.
We also found the way of GTV delineation varies differently, such as including the
bone or not, the location of the top and bottom slice along the z-axis. It is necessary to
refine the original GTV to enhance the accuracy of tumor extraction. Another limitation
is the dataset imbalance and lacking enough multi-institutional dataset. We need to
collect more data to validate the performance of deep learning algorithm.

CONCLUSIONS

This study demonstrated that some factors of the tumor regions, such as the definition
of tumor regions (GTV or BBOX), the dental implant artifacts of the CT scans, and the
post-processing methods of GTV are all associated with the performance of the
prediction model. By eliminating these factors, we built a 2.5D LR prediction model for
laryngeal cancer, which performed much better when compared to previous studies
mixing different types of cancers in H&N together. These results indicate that it is
important to look deeper in prognostic imaging markers for LR prediction in H&N
cancer. Accurately extracted tumor regions and imaging features may ultimately
promote the prognostic power of radiomics model. To our knowledge, this is the first
study that shows deep learning algorithm works much better in laryngeal cancer than
in the H&N cancers including tumors in both oropharynx and larynx.
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