

Linear Energy Transfer Weighted Beam Orientation Optimization for Intensity-Modulated Proton Therapy

JULY 12–16
2020 VIRTUAL
JOINT AAPM COMP MEETING
EASTERN TIME IGMT-41

Wenbo Gu¹, Dan Ruan¹, Wei Zou², Lei Dong², and Ke Sheng¹

¹Department of Radiation Oncology, University of California—Los Angeles, Los Angeles, CA

²Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA

Purpose

- In IMPT, the variation in biological effectiveness leads to the discrepancy between the constant RBE prediction and experimental observations.
- We previously developed an automated IMPT BOO algorithm using group sparsity regularization^[1], to automatically select beam angles and create treatment plans with superior physical dose distribution.
- A BOO method incorporating biological effectiveness is still unavailable.
 In this study, we developed a novel BOO framework integrating physical and biological doses.

Methods

Linear Energy Transfer weighted BOO (LETwBOO)

The LET and dose product (LET×D) is incorporated into the group sparsity based BOO to encourage selecting proton beams and generate fluence map, which 1) minimize LET×D in the OARs; 2)maintain LET×D to the target; and 3) achieve superior physical dose distribution.

Objective function

- B: the set including all feasible beams;
- x: vector of the intensities of scanning spots of all candidate beams;
- A: dose calculation matrix to transform x to dose;
- *L*: LET calculation matrix to transform *x* to LET;
- $L \circ A$: the elementwise multiplication of L and A to calculate LETxD;
- p_k : prescription dose of target volume $k \ (k \in \mathcal{T})$;
- $(LD)_k^{\text{ref}}$: reference LET×D value target volume k;

Evaluations

- 600-800 non-coplanar candidate beams;
- Three patients with skull base tumor (SBT) and three patients with bilateral H&N cancer around were tested;
- Dose and LET calculation are based on matRad^[2];
- Compared with 1) conventional plan optimizing physical dose with manually selected beams (<u>MAN</u>); 2) the same MAN plan reoptimized with additional LET×D constraint (<u>LETwMAN</u>);

Results

- The LETwBOO plans show superior physical dose and LET×D sparing for the OARs.
- On average, the [mean, maximal] doses of OARs in LETwBOO are reduced by [2.85, 4.6] GyRBE from the MAN plans in the SBT cases and reduced by [0.9, 2.5] GyRBE in the H&N cases, while LETwMAN is comparable to MAN.
- cLET×Ds of PTVs are comparable in LETwBOO and LETwMAN, where c is a scaling factor of 0.04 μm/keV.
- On average, in the SBT cases, LETwBOO reduces the OAR [mean, maximal] cLET×D by [1.1, 2.9] Gy from the MAN plans, compared to the reduction by LETwMAN from MAN of [0.7, 1.7] Gy. In the H&N cases, LETwBOO reduces the OAR [mean, maximal] cLET×D by [0.8, 2.6] Gy from the MAN plans, compared to the reduction by LETwMAN from MAN of [0.3, 1.2] Gy.

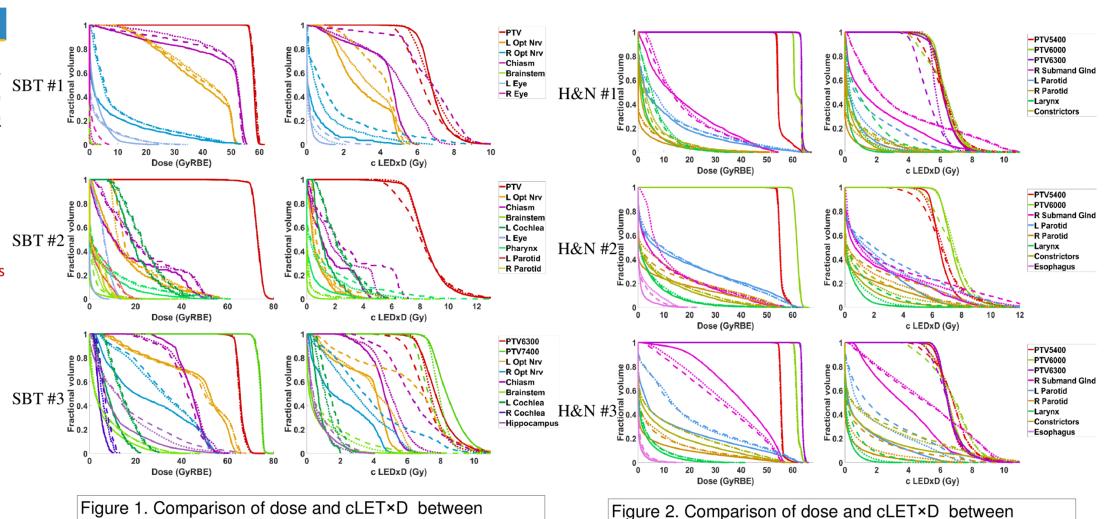


Figure 1. Comparison of dose and cLET×D between LETwBOO (solid), LETwMAN (dotted) and MAN (dashed) for the SBT patients.

Conclusion

We developed a novel LET weighted BOO method for IMPT to generated plans with improved physical and biological OAR sparing compared with the plans unaccounted for biological effects from BOO.

Reference

LETWBOO (solid), LETWMAN (dotted) and MAN (dashed)

for the H&N patients.

- [1] Gu W, et al. Medical physics. 2018 Apr;45(4):1338-50.
- [2] Wieser HP, et al. Medical physics. 2017 Jun;44(6):2556-68.