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INTRODUCTION

Assessing imaging biomarker (feature) robustness is an
essential prerequisite before investigating predictive power
or building reliable radiomic models [1]. However, radiomic
features aim to describe pathophysiological changes or
treatment outcomes may be dependent on scanner and/or
image acquisition parameters [2]. Models based on features
sensitive to such factors may lead to unreliable models,
thus emphasizing the requirement of identifying imaging
biomarkers that are robust over a wide range of imaging
conditions [3].

AIM

« To investigate radiomic features exiracted from images
acquired with a 0.35T scanner on an integrated MR-Linac.
The main objective was to study feature variability,
reproducibility and repeatability and identify features that
are robust for various possible imaging conditions, in both
phantom and patient data.

METHOD

Eleven images (acquired monthly) using a Magphan RT®
phantom and eleven images (acquired daily) using a ViewRay®
Daily QA phantom, representing ideal imaging conditions.

- 50 images from ten stereotactic body radiation therapy (SBRT)
pancreas cancer patients (5 daily fractions). Kidneys and liver
were chosen to represent heterogeneous and invariant tissue.

. Allimages were acquired with a True Fast Imaging with Steady
State Free Precession (TRUFI) pulse sequence, using two
different protocols for the phantom and patient images.

- 1087 shape-based, first order, second order (GLCM, GLRLM,
GLSZM and NGTDM?) and higher order statistical (LoG?, fractal
dimension, wavelets, Law’s) radiomic features were extracted for
each subject.

Feature variability was investigated looking at the reproducibility
and repeatability of each feature within and between the
phantom and patient datasets.

. Stability was assessed with the Coefficient of Variation (CoV),
where features with CoV<5% were classified as robust/stable.

1 GLoM = Gray level co-occurrence matrix, GLRLM = Gray level run length matrix, GLSZM = Gray level
size zone matrix and NGTDM = Neighborhood gray tone difference matrix.

210G - Laplacian of Gaussian.
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RESULTS CONCLUSIONS

Table 1: Shown in this table are the resulting features demonstrating high stability in both phantom and patient data within in each category. There are 130 features demonstratlng hlgh Stabl|lty over
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