Y D Incorporating explicit dose-volume constraints in deep learning
2020 improves prediction of deliverable dose distributions for prostate VMAT
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In th'e last decadles,' over'all pRI_:Ia_n juﬁ“ty in radlothehrapy (RT)hhas |m'provef:| as a rzstljlt o; DVH Loss function(2- Vi ) B< ] i
con'tlnuous SveHon € '|very approaches, S,uc as intensity modulate Given a binary mask of structure s (M) and a volumetric dose distribution D, the
radiotherapy (IMRT) and volumetric modulated arc radiotherapy (VMAT). Apart from . )

i ; e i . volume for a certain dose threshold d; can be defined as:
quality benefits, these more complex treatment modalities enlarge planning time,
hereby hampering the clinical implementation of adaptive strategies, which are expected _ Xijk Sigmoid(D(i,j, k) — d)M(i,j, k)
to have a positive effect on tumor control probability and post-treatment complications. Vs.de = ¥ M(in), )
S i

In conventional RT planning, a complex inverse optimization procedure including a prior o ' l’_j’ _ _ _ _
set of dose constraints is used to determine the optimal machine parameters for with i,j, and k representing the voxel indices for the 3D images. The ¢ is an index
administering the prescribed dose to the target volume (TV) while minimizing the dose fo'rthe dose'thr'eshold \falues which are constrained to be monotonically increasing
to the organs at risk (OAR). Recently, the research focus of RT has shifted towards with increasing index. Finally, the DVH for any structure s, can be reconstructed
knowledge-based planning strategies, which exploit information from previous and the mean squared difference over two DVHs can be calculated as additional
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treatment cases to more efficiently generate RT treatment plans for new cases. More loss term (Lpyy): an fo

specifically deep learning by convolutional neural networks (CNNs) has been applied DVH(D, Ms )= Vs,a, Vs,dy = Vs,dipe) Dose(Gy) Dose A d2ONNL PTV77: d,, dso, dos
successfully in RT for segmentation tasks [1] and for voxelwise dose prediction [2],
assuming availability of contours and learning the contour-dose relationship.
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L _ 11 DVH(D.. M DVH(D.. M 2 Figure 2. Example of predicted dose distributions for CNN1, CNN2 and F{g:re 3. A;imf: I?‘ojfz,;?"w;_f_; ﬁsl‘ograms{jo;‘(‘::.‘[ (dotted), CNN2 foss (dashed)
DVH = n_sn_tzs || ( = s)_ ( T 5)"2 ground truth (GT). and ground truth (solid) for PTV, rectum and bladder.

Validation Metrics Table 1. Percentage error on DVPs for OAR and PTV for a CNN trained with L2-loss function (CNN1) and a CNN trained with L2+ DVH loss function (CNN 2} before dose mimicking. The
lowest error value is indicated in bold.

A"Vl The two CNNs are compared using the clinical dose volume parameters (DVPs, CNN1 CNN2

_ _ ' _ ) o ' o i.e. dmax,d95,d50,d2), derived from the dose volume histograms. The
* To investigate the benefit of incorporating explicit flexible constraints imposed on the percentage error on these dose constraints relative to the prescription dose is

dose volume histogram (DVH) when training a convolutional neural network (CNN) for . PTV66 2.67(2.56)  2.32(2.09)  217(1L.77)  4.40(2.86)  1.76(1.61) 1.60(1.34) 1.30(1.10) 2.64(2.66)

3D dose prediction. caculted asfoliowsior ach Str”d”;el'fp P PTVTT 206(2.83) 2.60(2.04)  278(137)  321(184) 2.46(2.40) 1.97(LO0) 1.21(0.93) 2.09(2.40)

To evaluate deliverability of the predicted dose distributions using the dose mimicking %ADVP, = 100 = | (D) = ( T'i)l PTV—SY 3;??‘(2‘;51\) 3.20(2.54) 2.15(1.67) 2.29(1.93)  3.58(2.40) 3.38(240)  217(162)  2.61(3.01)

functionality of the treatment planning workstation. | Dpri | gl'f‘_ddL'l --L‘Lfﬂ--{é’) 2-?3(1-72)

To assess the feasibility of automated treatment planning for prostate VMAT RT. with DVP equal to the dose volume parameter of interest (dmax, d99, d98, d50 F‘”‘mi“]] L Slé‘::g é’;j lfﬂli 1“?1)] 7s o
ord2), Dp; and Dr; representing the predicted dose resp. the ground truth dose Fti:ill]iiiih _1 [J*g(*:;. .1‘)§ —.l-EJ‘iE"Li-‘;‘ii] Before DM
in organ i for a specific patient. Dy,; defines the prescription dose for the organ ¢ ' - 4:[12}(;@5) 352(2%3) Figure 3. Scatter plot with dose-volume parameters before dose mimicking on the x-oxis
of interest more specifically 95Gy for the SIB, and 77Gy for all other organs.
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and after dose mimicking on the y-axis for PTV (left), rectum and bladder (Right). Dose
distributions from CNN1 are shown in blue, CNN2 in red.

METHOD

Dataset

+ 73 CT scans and manually delineated contours of prostate VMAT patients Including the DVH constraints explicitly during CNN training improved dose 1. Vander Veen, J., Willems, S., Deschuymer, S., Robb'en, D., Crij-ns, W-,

* Prescription dose: 77Gy : prediction performance for almost all dose volume parameters (DVPs). When Maes, F, &'Nu'yts,S. (2019). Benefits of degplearnlngfor delineation of
« 31 0f 73 patients with a simultaneously integrated boost (SIB) of 95Gy performing dose mimicking, a higher change in these DVPs is observed for the organs at risk in head and neck cancer. Radiotherapy and Oncology, 138,
network which is trained without the DVH loss compared to the network trained 68-74.

Experiments TRT e e . with DVH loss. However the subsequent dose mimicking decreased differences in . Nguyen, D., McBeth, R., Sadeghnejad Barkousaraie, A., Bohara, G., Shen,
A U-net regression CNN (CNN1) was trained to predict the 3D dose distribution from the B s o mam e e DVPs between both methods, the number of acceptable treatment plans was still C. Jia, X., & Jiang, S. (2020). Incorporating human and learned domain
planning CT and contours as input, using mean squared difference as loss function and 5- - -

x larger for CNN2 than for CNN1 (10/13 vs 8/13). knowledge into training deep neural networks: A differentiable
fold cross-validation. A second, identical CNN (CNN2) was trained identically with an

dose-volume histogram and adversarial inspired framework for
additional term in the loss function that directly compared the DVHs of the predicted and 4 L generating Pareto optimal dose distributions in radiation therapy. Medical
the ground truth dose distributions, thus incorporating domain-specific knowledge physics, 47(3), 837-849.
considered during plan optimization. For one fold (13 patients), deliverable RT plans were oh 3 2
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