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INTRODUCTION

The accuracy of independent dose verification
relies on precisely modeling the lateral dose
spread from proton pencil beams. It can be
modelled by the summation of primary and
secondary Gaussian  distributions.  Primary
Gaussian kernel accounts for the broadening of
pencil beam due to multiple coulomb scattering
which is well explained by the Moliere theory and
accurately parameterized by Highland formula. A
smaller but much wider secondary Gaussian, i.e.
halo, is necessary to model the spray tails from in-
air spot profiles as well as the hard scatter from
nuclear interactions in the medium. However, it is
challenging to directly characterize secondary
Gaussian due to several reasons. Low dose tails
from in-air spot profiles vary between different
sites and treatment rooms, whereas commercially
available scintillator cameras do not provide
enough pixel depth to record these tails.
Meanwhile, parameterizations of nuclear halos in
the water are not consistent in the literature (M.
Soukup, et al. 2005, B.Clasie, et al. 2010). Monte
Carlo simulations would provide accurate results
but requires significant efforts up-front.
Therefore, we propose a method which provides
accurate halo characterization but requires less
effort and is more efficient than Monte Carlo
simulations.

AIM

In this study we propose an independent
approach to characterize the secondary
Gaussians for calculating lateral dose deposition
for secondary MU check of proton pencil beam
scanning (PBS) treatment plans.
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METHOD

For verification of treatment planning system (TPS) dose calculations, pencil beam
convolution superposition algorithm was employed to calculate point doses in patient QA
plans and compared to the TPS calculations. Lateral dose profile from each proton pencil
beam was modeled with two Gaussian distributions. Dose deposition from multiple
Coulomb scatter was first approximated with a primary Gaussian distribution with its sigma
analytically calculated from Highland formula. Dose contributed by in-air tails of spot
profile and nuclear interactions in water was modeled approximately as a secondary
Gaussian distribution (Halo). Sigma and weight of secondary Gaussian were derived from
the scatter effect in field size factor measurements using uniformly spaced, mono-energetic
proton beams at various energy and depths.

RESULTS

In each of the four proton treatment rooms, output factors were measured for five mono-
energetic proton beams with field size from 40 x 40 mm to 248 x 248 mm at 3-5 depths per
energy. Similar measurements were also carried out for mono-energetic beams with a
7.4cm WET range shifter. Sigma and weight of secondary Gaussians were derived from each
set of the field size factor curves (Figure 1), and fit as third degree polynomial functions of
energy and depth (Figure 2).
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Figure 1 Field size factors: measurement (blue dot) and calculated from
derived secondary Gaussian parameters (red line) for mono-energetic
beams without range shifter in one of the treatment rooms
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Figure 2 Sigma (left) and weight (right) of secondary Gaussian fitted to a polynomial function of energy
(R90) and depth

An in-house secondary MU check program was implemented
with the proposed halo model in 2019. We retrospectively
analyzed point dose calculated in this program as compared to
TPS calculation and QA measurement for 1785 treatment fields
and 474 patients treated in our proton center in the last 12
months. Excellent agreement was found between results from
secondary MU verification vs TPS calculations (0.20% + 1.83%,
Figure 3), as well as QA measurements vs TPS calculations AT |

(0.35% *+ 1.94%). No significant variations were found between T ek s

treatment fields with or without range shifter or different beam Figure 3 Histogram of percentage difference

L. . . between point dose calculated from in-
characteristics (field sizes, ranges, etc.) house MU check program and TPS

Mumber of treatmetn fields

CONCLUSIONS

We proposed and validated an effective approach for secondary Gaussian characterization which can be
incorporated for secondary MU check of proton PBS plans.
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