oy b SN MRI Radiomics for Predicting a Poor Prognosis in
Patients with GBM

P. H. M. BORGES', J. LIZAR', G. V. ARRUDA?2 and J. F. PAVONI'2
1 Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirdo Preto - University of Sao Paulo, Brazil
2 Radiotherapy Department, Ribeirdo Preto Medical School Hospital and Clinics, University of Sao Paulo, Brazil

2020 /s VIRTUAL
JOINT AAPM |COMP MEETING

EASTERN TIME [GMT-4]

Jl’é‘w; Sesid]

INTRODUCTION

Glioblastoma multiform (GBM) is the most common astrocyte brain tumor in adults, with
an occurrence of two or three episodes by one hundred thousand habitants [1]. Its
treatment is based on surgery (maximum resection of tumor) followed by radio and
adjuvant chemotherapy cycles [2], and it has a very poor prognosis presenting high
changes of recurrence and an average survival of 14 months [3]. This poor prognosis is
related with its intra-tumoral heterogeneity characteristics that difficult the use of
biopsies to extract detailed molecular information from it [4].

So, medical images — specifically Magnetic resonance images (MRI) — are being used to
monitoring GBM, due to the possibility to extract information regarding pathology,
biomarkers and genetics [5] through computational algorithms, such as radiomics
features [6]. These characteristics can be correlated with disease prognosis creating
predictive models of specific endpoints based on the extracted features.

AlM

Considering that MRl is used at the radiotherapy planning for delineating the
clinical volumes of treatment, this study aims to present a methodology using
the extraction of radiomics features from these structures and evaluate their

RESULTS

Table 1 presents general information for a sample of 43 patients.
The sample had 26 male patients and 17 female patients. Their age
varied from 34 to 85 years, with an average value of approximately
59+ 11 years. The mean PFS was 13.5 + 13.3 months, D95%

varied from 67 to 100%, with a mean of 92.1 + 5.4%, and lastly,

the GTV volumes varied from 2.2 to 184.4 cc. Kaplan Meier survival
curves for both groups studied are shown in figure 1.

After statistical analysis for PFS, 43 features presented a

normal distribution, and among them, the only feature that could
differentiate the two groups was kurtosis (table 2). The evaluation of kurtosis
values distribution for all the patients indicate a possible threshold at 2.7 to
separate the group of patients who had PFS lower and higher than 3 months
(figure 2).

Thus, for the group of patients of this study, we evaluated the effect of using
kurtosis equal to 2.7 as a rule in a PFS predictive model. This way, patients that
presented kurtosis < 2.7 were classified as having a PFS within 3 months and
were labeled with endpoint class = 1, and patients with kurtosis > 2.7 were
classified as having a PFS higher than 3 months and were labeled with endpoint

Table 1: Demographics information of the 43 patients. AVG means average; SD means standard
deviation and Min/Max corresponds to the minimum and maximum values, respectively.

Demographics

Values

Age on Diagnosis (AVG / SD / Min / Max in years)

58.9/11.2/34/85

Gender (M / F)

26/17

PFS (AVG / SD / Min / Max in months)

13.5/133/0/52

D95% (AVG / SD / Min / Max) (%)

92.1/5.4/67/100

GTYV volumes (AVG / Min / Max in cc)

71.4/22/184.4

Table 2: Normal distribution features found on the Shapiro-Wilk test and significant features selected

at the t-test.

PFS (3 months)

0

Gaussian feature 42

Significant feature

p-value

Kurtosis 0.02

significance for a poor prognosis. Also, a predictive poor prognosis model is

presented.

METHODS

43 patients selected

Image registration
(MR and CT planning)

Images were
resampled to
240x240 voxels

Statistical analyses
for dimensionality
reduction

T1 post-contrast MRI
were acquired

GTV for all patients
were redrawn

105 radiomic
features were
extracted

Survival analyses using
Progression-Free
Survival (PFS) endpoint

MRI imported to
Eclipse TPS

MRIand GTV were
imported to 3D Slicer

Dosimetric feature was
extracted using Monaco
TPS

Predictive model
using significant
features

class=0.

The resulting confusion matrix of the predictive model indicates a global threshold of the kurtosis vale.

Table 3: Confusion Matrix and its evaluation parameters for the predictive model based on the

accuracy of 70%. The model can detect correctly all 6 patients with PFS within 3
months and 24 patients with PFS higher than 3 months. [t missed 13 patients by Data
providing false-positive results (table 3). The ROC curve presents an area under

Confusion matrix

Evaluation parameters | Accuracy

the curve (AUC) of 0.78 (figure 3). True

Predicted Label

Label
As kurtosis was the feature able to differentiate the group of patients that

presented PFS within 3 months of the group with higher PFS, we can infer that, Classification

Precision

using a threshold of 2.7, our data shows that poor prognosis GBM tumors are

related to a heterogeneous tumor composed of a broad range of intensities in Model

2.0

the MRI, but with a tendency of presenting almost the same number of voxels
per intensity. Clinically it could be interpreted as a heterogeneous tumor
composed of necrose, edema, and neoangiogenesis.

CONCLUSIONS

This study presented a Radiomics analysis of MRI images to predict GBM's poor prognosis (PFS < 3
months). We used statistical analysis to assess that kurtosis can identify GBM patients with a poor
prognosis using the intensities from T1 post contrast MRI. Kurtosis works as a marker of short term
for tumor progression, capturing significant differences in the heterogeneous intensities
distributions of the residual tumor in the MRI. A predictive model with a global accuracy of 70%
and ROC AUC of 0.78 was developed based on a kurtosis threshold value. Although a large sample
and the standardization of MRI acquisition protocol images could improve the statistical
significance of the results, this study provided an insight into the understanding between
Radiomics features and survival outcomes, that may help physicians in the clinical management of
the patient.
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Figure 2: Kurtosis values distribution for PFS within 3 months:
histogram (a) and kurtosis versus class value plot (b).
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Figure 1 — Kaplan Meier survival curves for both groups evaluated in this study. Patients grouped as endpoint class = 1 {orange
line) had the PFS within 3 months, and patients with PFS higher than 3 months were labeled with endpoint class = 0 (blue line).
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Figure 3 - Receiver Operating Characteristic (ROC) Curve for the
propased predictive model.
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