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INTRODUCTION

+ Studies of cellular radiation response traditionally use
experimental and Monte Carlo (MC) methods, and both
can present diverse challenges. There can be large
variations in specific energy (energy imparted per unit
mass) deposited in small targets and low doses!'l.

* Focusing on computational aspects, we investigate the
generation of realistic specific energy distributions on
cellular length scales using a conditional generative
adversarial network (CGAN)[ trained using MC-
generated datasets.

RESULTS

. The CGAN can produce any state within the training data
domain, and relative errors in comparison with MC specific
energy distributions depend on dose level.

- Considering the relatively low dose of 8 mGy (for which the
microdosimetric spread is considerable at >100% for all
targets, source energies), the mean relative errors over all
target sizes and source energies are 9% (specific energy
mean), 14% (standard deviation), and 20% (number of targets
receiving no energy).

. The difference between MC generated and CGAN generated

AIM

» This work investigates application of machine learning
techniques to predict specific energy distributions in
populations of irradiated voxelized targets on cellular
length scales

datasets decreases with increasing dose, e.g. with
corresponding mean relative errors of 4%, 6%, and 14%, for
specific energy, standard deviation, and number of targets
receiving no energy, respectively at 20 mGy.

- Once trained, the CGAN can generate specific energy
distributions much faster than MC: on average, 3.4 x 10* times
faster the MC.

METHOD

. A CGAN is trained using MC-generated distributions of
specific energy (energy imparted per unit mass) scored
in microscopic (1-11 micron) water voxels irradiated by
photon sources (20-150 keV). Different dose levels
(mean specific energies) are considered.

- The CGAN-generated distributions are assessed based
on comparisons with MC data considering the
generated mean, standard deviation, microdosimetric
spread (quotient of standard deviation and mean) and
number of voxels receiving no energy.
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Figure 1: CGAN data generation workflow: (Top) Training data is generated using Monte Carlo
simulations, generating specific energy distributions that are (Middle) then used in training Generative
Adversarial Network. (Bottom) Once trained, the network is capable of producing any specific energy
distribution that it was initially trained on in a small fraction of the time for MC simulations.
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Figure 2: Comparison of individual CGAN generated specific energy distributions to that of Spmcitic snurgy [ ey S s iwey

the MC generated using 100 keV monoenergetic photon source incident on voxel grid of
varying side lengths (indicated in figure), at different dose levels based on the produced
microdosimetric spread (quotient of standard deviation and mean of specific energy
distribution). Each box and whisker are a summary of results over many realizations of
specific energy distributions generated using CGAN and MC techniques.

Figure 3: Comparison of averaged specific energy
distribution considering 50 individual realizations of
different permutations of source energy, target size and
mean specific energy.

CONCLUSIONS AND FUTURE WORK

. The CGAN can generate realistic specific energy distributions over the range of doses considered, 0.05-100
mGy. The accuracy of the algorithm increases at higher dose levels, at 20 mGy mean absolute error
averaged over all beam quality and target size variations of 4%, 6%, and 14% respectively.

. Ongoing work includes investigating CGAN ability to replicate higher order textural information beyond
mean, standard deviation and number of zeroes as well as further optimization of network to improve data
generation accuracy.

. Future work will involve using CGAN techniques in conjunction with radiobiological models to develop
predictive models capable of considering biological effects.
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