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INTRODUCTION

Diffusion Tensor Imaging (DTI) is a specific MRI sequence to make
use of the diffusion of water molecules to generate contrast for

RESULTS Figure 1. Comparison of the reconstructed images, Fractional Anisotropy, and principle directions maps

Figure 1 demonstrated the reconstructed DTl by neural networks using 1/4 |
and 1/6 sampled Cartesian schemes, and 1/6 and 1/8 sampled non-Cartesian
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shadows its clinical applications. To accelerate DTI acquisition, deep .. . . . . £l Nl fial w
learning (DL) has been proposed to undersample k-space and then principle directions maps compared against the fully sampled k-space images. § 4 ,w?{ »oA
reconstruct a complete MR image. For image quality, the reconstructed images by the DC-CNN network using g - b' BT
Currently, few data are available about the undersampling the 16.7% and 12.5% non-Cartesian radial undersampling scheme are measured £l m = : _ N :
schemes of fast DTl using DL. In this study, the undersampling [l to have TRE values of 0.068 and 0.088, MSSIM values of 0.60 and 0.51; in T T e T T
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For biological information, ADC and FA maps derived by non-Cartesian radial <
AIM undersampling and Cartesian undersampling all show comparable to the
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reference ADC and FA maps that was derived from the fully-sampled k-space
data. In principal direction maps, the red, green, and blue colors represent the
direction of diffusion in the left-right, anterior-posterior, and superior-inferior
directions.

We study the feasibility of the fast DTI techniques. Also, we aimed

to compare the acquisition speed of Cartesian undersampling scheme
against that of non-Cartesian undersampling scheme on DC-CNN
network on the basis of preserving the image quality and biological
information for diffusion tensor imaging (DTI).
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CONCLUSIONS

METHOD e - . :
The reconstructed diffusion-weighted MR images by DC-CNN network
* Seventeen DTI brain scans from the TCIA [1,2] were used, each i demonstrated the feasibility of the fast DTl techniques. Also, the results
with twelve diffusion-weighted data sets with b =1,000 s/mm* and presented in this work suggest that non-Cartesian radial undersampling
one with b = 0s/mm?. . . . .
outperformed the Cartesian undersampling on accelerating the DTI acquisition

For each DTI data set, three slices were randomly selected for bv DC-CNN K he basis of } he i l d biclogical
evaluation, and the remaining data were used for the training Y i hetwork on the basis of ensuring the image quality an lologlica

reconstruction models using the DC-CNN [3] network. information.

Quarter Sampled One-sixth Sampled

Fully Sampled Quarter Sampled

Principal Direction Maps

The training data were sampled using quarter and one-sixth
sampled Cartesian undersampling schemes, and one-sixth and
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