

Correlation of Body Mass Index (BMI) and Water Equivalent Diameter (D_w) Used for Size-Specific Dose Estimates (SSDE)

A. Abuhaimed¹ and C. Martin²

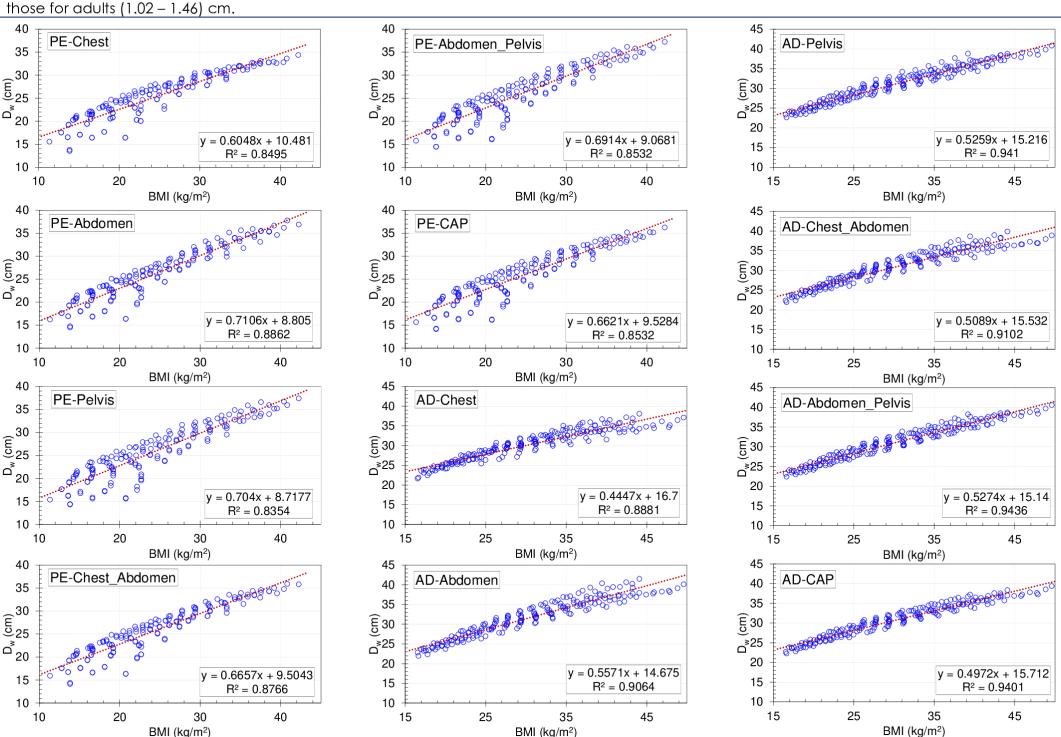
¹The National Centre for Applied Physics, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.

²Department of Clinical Physics, University of Glasgow, Glasgow, UK.

JULY 12–16 2020 VIRTUAL JOINT AAPM COMP MEETING EASTERN TIME [GMT-4]

INTRODUCTION

The concept of size-specific dose estimates (SSDEs) has been recommended for estimating doses delivered to patients of specific sizes from CT examinations. SSDE converts volume CT dose index $(CTDI_{vol})$ measured in phantoms of reference sizes to dose for a specific size using a conversion factor, which is determined by water equivalent diameter (D_w) for the region of interest in the patient.


AIM

The aim of this study was to investigate the correlation between body mass index (BMI) of the patient and $D_{\rm w}$ of the region.

METHOD

A total of 158 pediatric phantoms ranging from 1 to 15 years old and 193 adults phantoms of various sizes reconstructed from images of patients who underwent CT examinations were involved [1]. The BMIs of the phantoms were in the ranges of (10 – 115) kg/m² and (40 – 125) kg/m² for pediatric and adults, respectively [2]. D_w was assessed for six scan regions for each phantom: chest, abdomen, pelvis, chest & abdomen, abdomen & pelvis, and over all the trunk regions (CAP), i.e. the trunk using a MATLAB code developed in house. D_w values were assessed with a mono-energetic beam that represented a spectrum of 120 kVp.

RESULTS: Good correlations were found between BMI and D_w for the regions studied as shown in the figures below. Values of D_w increased for each region with BMI. The correlations were analyzed by linear regression for each region. R^2 values were in the ranges of (0.84 – 0.89) for pediatric (PE) and (0.89 – 0.94) for adults (AD), and root mean square error (RMSE) of the correlations were slightly larger for pediatric (1.86 – 2.33) cm than those for adults (1.02 – 1.46) cm

CONCLUSIONS

The correlations found between BMI and D_w may be considered as a simple and quick approach to determine D_w of a patient, and hence the conversion factor for SSDE. This approach only gives a good estimation for D_w prior to a given CT exam, but the accurate assessment should be made with the methods described in the AAPM task group report 220

ACKNOWLEDGEMENTS

The authors would like to thank the National Cancer Institute of the National Institutes of Health (NIH) in the US for sharing the phantoms used in this study.

REFERENCES

- Abuhaimed, A. and Martin, C. J. (2020) 'Estimation of size-specific dose estimates (SSDE) for paediatric and adults patients based on a single slice', Physica Medica: European Journal of Medical Physics. Elsevier, 74, pp. 30–39. doi: 10.1016/j.ejmp.2020.05.001.
- 2. Lee, C. et al. (2010) 'The UF family of reference hybrid phantoms for computational radiation dosimetry', *Physics in Medicine and Biology*, 55(2), pp. 339–363. doi: 10.1088/0031-9155/55/2/002.

CONTACT INFORMATION

All authors declare that there is no conflict of Interest