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INTRODUCTION

Shape properties of tumors in PET, CT and MR images have been
found to be significant predictors of disease progression and
efficacy of treatment (1,2).

Thus, shape features have become an important component in
radiomics-based pipelines (3).

On the other hand, the use of convolutional neural networks
(CNNSs) for image-based clinical tasks is gaining popularity. Recent
work has determined that ImageNet-trained CNNs are biased
towards texture (4). This implies that in medical image analysis,
CNNs may implicitly under-utilize shape information.

AIM

To test the ability of practical CNN architectures to explicitly “learn”
standardized radiomic shape features, in comparison to intensity
and texture features.

To this end, we train CNNs to predict the values of radiomic
features for synthetic PET images of tumors.

METHOD

Image data and radjiomic features
5000 synthetic PET images of tumors (64x64x64 voxels) and
their binary masks were generated (Figure 1) using a stochastic
region growth algorithm and Perlin pattern generator.
Radiomic features were computed using the SERA library (5).
Shape features were computed from the binary lesion masks,
while intensity and texture features were computed using voxel
intensities inside the lesions.

Neural net architectures

* Aseries of standard “convolution-nonlinearity-pooling” (CNP)
network architectures were tested, as well as several state-of-
the-art (SOTA) networks pre-trained on ImageNet.
Standard 3D CNN architectures were tested with 3, 5, 7 and 9
convolutional layers. SOTA networks included: MobileNetV2,
Xception, NASNetMobile, DenseNet201; only the final regression
layer was trained.
The inputs were the intensity images, and the targets were the
corresponding radiomic feature values.
100 training epochs, batches of 32 images, Adagrad optimization
(learning rate 0.01), mean absolute error loss function.
4000 images were used for testing, 500 for validation, and 500
for testing.

Analysis
The agreement the between the CNN-predicted and explicitly-

computed radiomic feature values was analysed.
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RESULTS: STANDARD CNN ARCHITECTURES

+ The lowest prediction errors
were measured with size
features (area, convex area,
eq. diameter, perimeter), as
well as the mean and max
intensity values.

Figure 1: Examples of
generated synthetic
PET images of tumors,
illustrating different
tumor sizes, shapes
and textures.

* Prediction errors were measured as the range-
normalized mean absolute error between the predicted
and ground truth feature values.

The highest prediction errors were measured for
features that quantified the shape irregularity — solidity,

extent, elongation, and compactness (Figure 2). The pixel intensities

were set to represent
PET standardized
uptake values (SUV).

The improvement in
performance with added
convolutional layers was either
small or insignificant.

Notably, these features were predicted least
accurately with every CNN, i.e. regardless of the
network depth.

B

Figure 2: Radiomic feature prediction errors with standard CNN architectures. The CN-3D-X abbreviations denote 3D CNP networks, X stands for the number of convolutional layers.
Mean error values are plotted from 5 independent CNN training trials.
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RESULTS: STATE OF THE ART NETWORKS

* With 2D SOTA networks, the highest prediction » The SOTA prediction errors were
errors were found with shape irregularity features: higher compared to standard
solidity, extent, and eccentricity (Figure 3) — a CNNs.
similar finding to standard CNN architectures.
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The scatter plots for MobileNetV2 i )
(Figure 4) demonstrate that the -1 0 1 2 -2 0 2 -2 0 2
measured prediction errors did not True value True vaiue True value
originate from a few significant
outliers or biases.

Overall, all SOTA networks performed similarly
across different features: a greater number of
parameters or layers in the network did not result in
lower prediction errors.

Figure 4: Predicted feature values plotted against true feature values
for the MobileNetV2, NMAE = normalized mean absolute error.

Figure 3: Radiomic feature prediction errors with ImageNet-pretrained advanced networks. Mean error values are plotted from 3 independent CNN training trials.
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CONCLUSIONS

. Standard CNN architectures and SOTA networks produce high
prediction errors for shape irregularity features, such as solidity and extent.
Size, intensity and texture features are captured more readily, i.e. with lower
prediction errors.

. Deep learning models, particularly CNNs, may not be effective at
capturing and leveraging shape lesion properties that have previously been
associated with clinical outcomes.

. The use of explicit radiomics and traditional machine learning
techniques may not be readily discarded in favour of CNNs when it comes to
medical image analysis, as the strengths of these two approaches appear to
be complementary.

. Future work will focus on the strategies to improve shape feature
representations in CNNs, as well as extending the tests to more realistic and
extensive images of tumors.
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