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INTRODUCTION/PURPOSE RESULTS

* Sparing esophagus as the major organ at risk (OAR) is critical in radiotherapy (RT) of lung cancer The best reconstructed ps-CBCTs (a=0.5 B=1) had average SSIM=0.89, RMSE=0.05, CC=0.97 and UQI=0.95 in the cohort and the worst (a=0 B=0.5) had SSIM=0.44, RMSE=0.14, CC=0.81 and UQI=0.74 (Fig. 3)
patients to minimize radiation-induced toxicities such as acute esophagitis (develops in 50% of pCT, weekl and week2 CBCTs along with their best ps-CBCT are shown in Fig.4 for two typical cases. Validation results for all three different models are presented in Table 1.
the patients) The proposed model trained using ps-CBCT images segmented esophagus on ps-CBCTs, weekly CBCTs and pCT images with high DSC of 0.74+0.03, 0.72+0.05, and 0.77+0.04, respectively. (Table 1)
The pCT model could segment esophagus on pCT images with high DSC 0.76 but failed to segment on w1 CBCT (DSC of 0.63).
® Cross-modality automated segmentation of esophagus in cone-beam CT (CBCT) and planning CT

(pCT) using 3D convolutional neural networks for image guided/adaptive RT
[
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noise/scatter artifacts from CBCTs to their pCTs
METHOD > o | '
60 lung patients treated via IMRT and had weekly CBCTs. Ps-CBCT 2 a=1p=0.5 = Ps-CBCT3 =0.5 B=0. =1p=
7 variations of scatter artifacts/noise were extracted from the week 1 CBCTs using different

parameters of Power-Law Adaptive Histogram Equalization that contained the highest to the
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Extracted CBCT artifacts were added to their corresponding pCT and were reconstructed using

3D-UNet models with a multi-objective loss function (dice coefficient and binary cross-entropy)

were fed using i)ps-CBCTs ii)pCT and iii)w1 CBCT images by 5 fold splitting of training/testing

N Ps-CBCT 0.74+0.03 0.77+0.04 0.72+0.05 0.71+0.04 0.70+0.05 0.69+0.06 0.71+0.05 0.71%+0.06
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A . p
cases (80/20) for esophagus segmentation using planning esophagus contours as ground-truth. Psuedo CBCT quality evalustion Figure 4. pCT, weekl and week2 CBCTs along with their best ps'-CBCT are shown for two typical cases. For each case, green and red contours
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CBCTs (ps-CBCT). (Fig.1)
(Fig.2) are ground-truth and segmented esophagus contours, respectively.
L Figure 3. Variation of ps-CBCTs images along with their pCT and the ground-truth weekl CBCT. ps- ps-CBCT 0.79+0.07 0.78+0.08 0.83+0.07 0.82+0.08 0.81+0.09 0.83+0.08 0.83+0.07 0.81+0.07

The ps-CBCTs were quantitatively evaluated against their ground-truth CBCT using structure
similarity index (SSIM), root mean square error (RMSE), cross correlation (CC) and universal
The models were externally validated on the weekly CBCTs and pCTs using dice coefficient
(DSC) and Sensitivity between the physician-contoured and UNet-segmented esophagus.
Figure 1. Entire workflow for generating pseudo-CBCTs trained with 3D-UNet. CBCTs are shown in the order of the highest to the lowest similarity with the week1 CBCT. Green Sensitivity wl CBCT 0.64+0.11 0.73£0.07 0.72+0.09 0.70+0.12 0.70+0.12 0.69+0.10 0.68%0.13
contours are ground-truth esophagus contours. Quantitative ps-CBCT quality evaluation is presented pCT 0.80+0.08 0.69+0.09 _ _ _ _ _

Metric values

I I Table 1. Dice similarity coefficient and sensitivity results.

Baseline CBCT

Pseudo CBCT Inputs Segmentation at the bottom.
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ﬁ ® Qurimage driven in-silico data augmentation spans the realistic noise/artifact spectrum across patient CBCT/pCT data and can generalize well across modalities,
eventually improving the accuracy of treatment setup and response analysis.
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—ﬂ ;@ ﬂ 3D-UNet model trained on the pseudo-CBCTs was robust and generalizable enough to produce results on the pCTs, achieving 0.77 dice overlap against the previous
best of 0.72 [1].
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¥ Feedback Concatenation . [16°64] 3D-UNet model trained on more realistic artifact-induced pCTs, could segment esophagus on both weekly CBCTs and pCTs with high accuracy for longitudinal CONTACT IN FORMATI ON

imaging studies. The model has a potential to segment any OAR and therefore, can be used as a cross-modality segmentation tool to provide image guidance. *Sadegh R Alam, Ph.D., riyahiam@mskcc.org
Figure 2. Proposed 3D-UNet architecture.
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