

Optical Calibration of Radiochromic Film Thickness With IR Dye

R. KAIYUM^{1,2}, N. ALLAM³, C. SCHRUDER¹, O. MERMUT¹, A. RINK¹⁻⁵

1 Department of Physics & Astronomy, York University, Toronto, ON; 2 TECHNA Research Institute, University Health Network, Toronto, ON 3 Department of Medical Biophysics, University of Toronto, Toronto, ON; 4 Department of Radiation Oncology, University of Toronto, Toronto, ON 5 Medical Physics, University Health Network, Toronto, ON

750

Wavelength (nm)

INTRODUCTION

- radiochromic films using Lithium pentacosa-10,12-diynoate (LiPCDA) as the radiosensitive component have been shown to be suitable for use as a real time dosimeter¹ in an optical fiber probe configuration²⁻⁴
- sensitivity defined as change in optical density (OD) per dose absorbed by the material
- sensitivity of radiochromic films is a function of thickness of material^{3,5}
- variations in sensitivity of commercial dosimeters typically calibrated for by medical physicist
- calibration requires irradiation of dosimeters to known dose
- calibration may be performed by optically measuring thickness using Beer Lambert Law

$$A = \varepsilon c l$$

where ε is the extinction coefficient in mol⁻¹ cm⁻¹ (or L/g cm⁻¹), c is the concentration of absorber in mol (or g/L), and I is the measured path length

path length is the radiochromic coating thickness, proportional to sensitivity

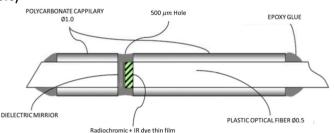
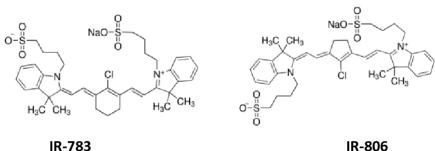


Figure 1. Schematic of optical dosimeter probe

- the absorber used must be:
- optically distinct from the peaks of LiPCDA in near-infrared (near-IR)
- stable with radiation dose
- stable with time
- · homogeneously distributed within coating

AIM

• to optically calibrate for variations in LiPCDA radiochromic film thickness, for use in a real-time fiber optic dosimetry, through the incorporation of an IR dye


CONTACT INFORMATION

Alexandra.Rink@rmp.uhn.ca

omermut@yorku.ca

METHOD

 four cyanine IR dyes with absorbance peaks at 783 nm, 806 nm, 868 nm and 880 nm

- IR dyes dissolved in deionized water (Millipore Milli-Q) (2 stock batches/dye) and diluted to different concentrations
- absorbance spectra measured on UV-VIS (1 cm cuvette, Varian Cary 50) on Day 0 and subsequent days (up to 5 aliquots)
- one dye (IR-783) incorporated into the coatings on Mylar™ substrate
- coatings irradiated with 254 nm UV light to initiate polymerization
- change in absorbance measured with UV-VIS

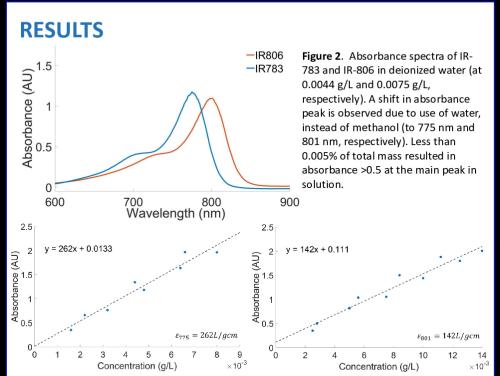


Figure 3. Calibration curves for IR-783 and IR-806 in deionized water, showing a linear increase in absorbance over the selected concentration range.

- to produce a peak of 0.6 OD in optical probe, 0.62g/L and 1.2 g/L required for IR-783 and IR-806 dyes, respectively (20 μm coating)
- IR-806 at >0.0102 g/L has shown to be unstable in aqueous solution⁶

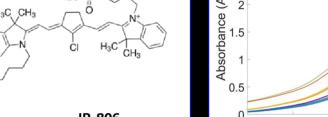
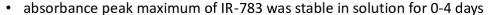



Figure 4. Absorbance spectra of IR-783 and IR-806 in deionized water (at 0.008 g/L and 0.014 g/L, respectively) as a function of time. Errors bars represent single standard deviation of five aliquots

900

- IR-806 showed a peak absorbance drop within the first 4 days in solution
- main absorbance peak of IR-783 shifted to 800 nm once incorporated into LiPCDA coating
- absorbance of IR-783 was stable with absorbed dose from 254 nm UV light

IR-783 peak did not interfere with the 635 nm absorbance peak of the LiPCDA

Figure 6. Photograph of LiPCDA coatings on Mylar™ substrate with IR-783 integrated before and after (left and right, respectively) irradiation with 254 nm UV

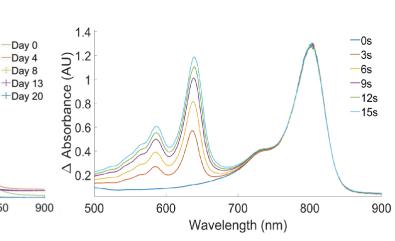


Figure 5. Change in absorbance of LiPCDA coatings on Mylar™ substrate with IR-783 integrated as a function of time irradiated with 254 nm UV light.

CONCLUSIONS

- IR-783 and IR-806 are water soluble; IR-808 and IR-880 are not
- extinction coefficient reduces with prolonged time in solution, with IR-806 no longer having a detectable absorbance peak after 2
- IR-783 is stable in solution over the first several days

Wavelength (nm)

- ε for IR 783 in aqueous solution sufficient for use in thin coatings
- IR 783 spectrum and ε is stable under UV irradiation
- IR 783 may be a suitable dye for optical calibration in a radiochromic LiPCDA coating
- stability in coatings as a function of time and environmental conditions needs to be verified
- stability in coatings as a function of kV and MV beam dose needs to be verified

REFERENCES

- 1. Rink A., Vitkin IA., Jaffray DA. Characterization and real-time optical measurements of the ionizing radiation dose response for a new radiochromic medium. Med Phys 32(8):
- 2. Rink A & Jaffray DA. Fiber optic-based radiochromic dosimetry. In Scintillation Dosimetry, (p. 293-314). S. Beddar & L. Beaulieu (Eds.), Boca Raton, FL, USA: CRC Press
- Croteau A., Caron S., Rink A., Jaffray D., Mermut O. Real-Time Optical Fiber Dosimeter Probe. SPIE 7894 (2011)
- 4. Croteau A., Caron S., Rink A., Jaffray D., Mermut O. Fabrication and Characterization of a Real-Time Optical Fiber Dosimeter Probe. SPIE-OSA 8090 (2011)
- Rink A., Vitkin IA., Jaffray DA. Suitability of radiochromic medium for real-time optical measurements of ionizing radiation dose. Med Phys 32(4): 1140-1155 (2005)
- 6. Mills, EM. Analysis of IR-806 Aggregation and Chromonic Liquid Crystal Properties. Swarthmore College: Semantic Scholar; (2011)

ACKNOWLEDGEMENTS

This works was supported by the Natural Sciences and Engineering Research Council and by the Canadian Institutes of Health Research (PJT- 162294).