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INTRODUCTION METHODS RESULTS

We previously evaluated late-onset cardiac disease in the The CCSS includes 24,214 individuals diagnosed 1970-1999, median age at diagnosis of 7.0 (range 0-20.9) years and a * RT dose-response relationships established using mean heart doses for Hy,q and

Childhood Cancer Survivor Study (CCSS) with patients diagnosed follow-up of 27.5 (range 5.6-58.9) years. For those treated with RT (n=11,667), RT fields were reconstructed on an in- the Hyjernae models were within 10 % for all outcomes and all dose ranges.
1970-1999%, Since most individuals in CCSS were treated prior to house phantom scaled to their age at RT.* Note that when the phantom was scaled to different ages, separate scaling

computed tomography (CT)-based planning, heart doses were functions were applied to each of the body regions to account for the non-uniform growth in the lateral, superior-inferior,
- - ~None

estimated by reconstructing each individual’s radiation therapy and anterior-posterior directions of the different regions.> ---0.1 to <10y
(RT)-treatment on an age-scaled phantom with a simple atlas- —-20 :g:aoe,’;
based heart model, H,,,, (Figure 1a).
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* For each individual we calculated mean heart dose for two different heart models - - - >= 30Gy

(1)Hgpriq and The heart models within each age-scaled

(2) Henaie model that most closely matched the individual’s age/sex {= Phantom were also scaled to age at RT by
applying trunk-specific scaling functions.”
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Recently, we enhanced our phantom with an anatomically more
realistic heart model, Hy,.;4 (Figure 1a)?2
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The Hyy,,ig model was developed: The selection process for the H,,,,,... model is illustrated in Figure 2.
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* by combining the age-scalable capability of our computational - e ~ - = ~ —- -
phantom with anatomical accuracy of the University of Florida
(UF)/National Cancer Institute (NCI) reference phantom

H H H . Figure 2: Illustration of age/sex- ;
HA]ternare, 0.1 Alternate, 1 Hybrid Alternate, 10 Alternate, lSM\lSF matched heart Selection process. 0 - o 0

Example: For an individual that was 0 10 20 0 10 20 30 0 10 20
Time Since Diagnosis in Years

series (adopted by the International Commission on Radiation 11.3 years at RT, the H, -
. = ’ ternate,
Protection)? model was selected, which was

Figure 4: Cumulative incidence of cardiac outcomes for Hyg,4(dashed lines) and

H pjternate (Solid Lines).
from the 5-year-old UF/NCI reference phantom heart model then scaled to age 11.3 years. o

because it was the closest age match to the median age at

diagnosis (7 years) of the CCSS cohort CONCLUSIONS
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We also created alternate heart models (Figure 1b) using the - ~ < & =
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other aged UF/NCI phantoms (0.1, 1, 10, and 15 years with This study confirms the findings of our prior study' that established a linear
We evaluated RT dose-response relationships using piecewise-exponential models, adjusting for attained age at evaluation, relationship between mean heart dose and risk for late cardiac disease. However, with
sex, diagnosis age, race, smoking history, diagnosis year, and chemotherapy exposure. Relationships were examined using an anatomically more realistic heart model, relative rates of cardiac disease are higher
mean heart doses calculated for Hyy, 14 and Hyjepre models. than previously estimated for doses between 20 and 29.9 Gy. It is important to note

that the shift in the dose and results are due to use of an updated cardiac model and
‘ ‘ ‘ . not a change in the way patients were treated. Also, the data suggest that the results
RESULTS . . - . are robust to subtle differences in heart anatomy.
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separate male and female models for age 15 years).

A(]as H"bﬂd Alternate, 0.1 Alteruare 1 Hvbnd .ﬂlleruate 10 Alteruate 15M Altemate 15F > None

*  When comparing RT dose-response 20 ——a i Otzgy
Figure 1: Volume renderings of (a) Hyyas and Hygy,ig and (b) Hyjeernare models relationships established using ——20 to < 30Gy REFERENCES
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