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INTRODUCTION

Analytical stopping-power-ratio (SPR) estimation methods using dual-
energy CT (DECT) have limitations in resolving the influence from the
beam-hardening artifact, i.e., CT number variation of the same object
scanned under different imaging conditions, such as different patient
size and location in the field-of-view (FOV). We present a convolutional
neural network (CNN)-based framework to estimate proton SPR that
accounts for patient geometry variation and addresses CT number
variation. The proposed framework was tested on prostate and head-
and-neck (HN) patient datasets with two training scenarios: training
with patient CT images (ideal scenario) and training with computational
phantoms (realistic scenario).
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Quantitative results on 40 patients (800 images, ~30M pixels) suggest that:

- HS method performed decently (~¥1% uncertainty) on prostate data, but not on HN data

) - Unet(PT) yielded close to zero uncertainty
Mean: -0.12%

STD: 1.55%

Mean: -1.56%
STD: 5.65%

Mean: -0.32%

STD: 5.35% impact from CT number variation
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CONCLUSIONS

Results from the U-net model trained with phantom
data (Unet(PH)) shows the feasibility of using CNN in a
realistic condition for accurate SPR estimation by
incorporating geometric variations into the training. U-
net trained with patient data (Unet(PT)) further shows
the potential of CNN that the model is capable of
reducing the error close to zero. We look forward to
improving the Unet(PH) model with more efficient
training data and/or architecture.
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- Unet(PH) performed significantly better than HS method, presumably reducing the
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