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Deep learning-based auto-segmentation methods have been autosegmentation, using only the synthetic CT scans. * Results for left and right parotids segmentation are plotted in
introduced as effective tools for medical imaging segmentation with|* 300, 600, 1000, and 2000 synthetic CT scans and ke Fig. 3 and 4.
reduced human efforts and bias. The amount of the well-curated ge|:1erated from one PCA model SWETC used for training. . * The average Dices for left and right parotids segmentation
data available for training is critically important to achieve a high- | TNis process :vzsfrepee;teldob;gsmgdt:g ;?:Z‘e nLémIber§tEftt‘ra|n|ng range from 63.2% to 83.1%, and 61.0% to 82.9%, respectively.
: ) . -~ cases generated from 7, 10, 20, an models wi e
quality de'ep I('earnmg(DL) r'nodel. However, 9btammg manual training data distributed evenly between each PCA model * Average Dice value varies with the number of synthetic CT
contours is a time-consuming task and requires considerable i scans as well as number of PCA models used to train the
expertise. In many clinical applications, the availability of well- Evaluation networks
curated training data is very limited. Many data augmentation Calculate Dice similarity coefficients between the auto-generated
approaches, such as rotation, cropping, or random nonlinear contours and the physician-drawn contours on 162 independent test
deformation, have been introduced to overcome this challenge. CT scans. Left Parotid
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atient population variations and can be hi sensitive to the
P . pop Enty : /'\ : g — Fig 5. Visually inspection of the autosegmentation results. Physician
choice of parameters. Further researches are needed to overcome I : )
e . ! o = 8o | / i drawn contour in green. VNET-generated contour in . All auto-
the data sparsity in DL model training. I I DIR k . :
[ I - p generated contours were predicted by the VNET model trained on
. : : Contoured CT Scans synthetic CT scans generated from 10 PCA models.
Aims | i 75 1
: : E k= * Using only 10 well-curated patients for training, we were able to
This study aims to propose an effective data augmentation method : < : | - ) | achieve a segmentation accuracy of 82.8% and 82.0% for left anc
which enables to generate high-quality DL segmentation models : . I — right parotids, which are comparable to the results of the state-
when the availability of contoured cases is severely limited (e.g.~10 | | : : ¥ of-art autocontouring approach.
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patients). | ) : ' " . xiio ig:;o * Improvement is marginal using more than 10 PCA models or
: A B | PCA Model | b peain creating more than 2000 synthetic CT scans.
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DataSEt . ) Tr_ai"i"g CT Scans Synthetic CT Scans Fig 3. Dice results for left parotid
* Thirty head-and-neck CT scans with well-defined contours Fig 1. Workflow of PCA approach to generate synthetic CT scans + We demonstrated an effective data augmentation approach
* Templates for generating synthetic CT scans and corresponding contours B P to train high-quality deep-learning segmentation models from
* Two hundred head-and-neck CT scans without contours 2 ' : : . . . . . . a very limited number of well-contoured patients.
Synthesizing New Examples . * This work could potentially greatly reduce the effort in data
. . i ‘ ’ i curation for deep-learning based autosegmentation.
Fig. 1 shows the workflow of our proposed method to using 80 [ ™ 7

principal component analysis(PCA) approach to generate synthetic

CT scans, which can simulate realistic patients.

* The 30 head-and-neck CT scans with contours were deformably
registered to those 200 CT scans without contours.
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