

Development of a Machine Learning Algorithm for Hybrid Interstitial Needle Prediction in High-Dose-Rate Cervical Brachytherapy

K. Stenhouse^{1,2}, M. Roumeliotis^{1,2,3}, P. McGeachy^{1,2,3}

- ¹ University of Calgary, Department of Physics and Astronomy
- ² Tom Baker Cancer Centre, Department of Medical Physics
- ³ University of Calgary, Department of Oncology

Purpose

Develop a machine learning model for predicting the optimal hybrid interstitial (HIS) needle configuration for high-dose-rate (HDR) cervical brachytherapy based on high-risk clinical target volume (HR-CTV) geometry metrics and expand upon previous work developing a machine learning applicator selection model for HDR cervical brachytherapy.

Introduction

- HIS applicators used in HDR brachytherapy for cervical cancer (Figure 1)
- Use of interstitial needles results in more invasive procedure
 - Avoid use of excessive needles
- · No explicit guidelines for optimal needle selection
 - Selection based on extent of high-risk clinical target volume (HR-CTV)
 - Largely dependent on clinician's experience

Figure 1. Vienna hybrid interstitial applicator (Elekta AB, Stockholm, Sweden)

Methods – Data Preparation

- **Dataset:** 86 historical patient treatment fractions using HIS applicators
 - Suffered from label imbalance, some needle positions used infrequently
 - To account for imbalance, model performance evaluated using micro-averaged metrics that calculate the metric globally
- Extracted Features: Mean and maximum HR-CTV lateral and vertical extent, volume, and offset of the HR-CTV center of mass (Figure 2)
 - Features divided into 33° sections centered over applicator needle channels to express directional HR-CTV geometry

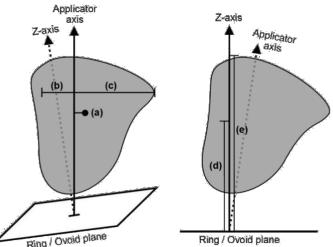


Figure 2. HR-CTV
geometry features.
Centre of mass offset
(a), mean (b) and
maximum (c) lateral
extent are defined
perpendicular to
tandem axis. HR-CTV
mean (d) and
maximum (e) vertical
extent are defined
perpendicular to
ring/ovoid plane.

Methods – Machine Learning Model

- Multi-label K-nearest neighbors algorithm selected to predict the use of hybrid interstitial needles based on directional geometry
 - Multi-label classification can select the use of multiple needles simultaneously
- Model training/testing was repeated for 1,000 random selections of training/testing data (75%/25%) to evaluate performance (Figure 3)

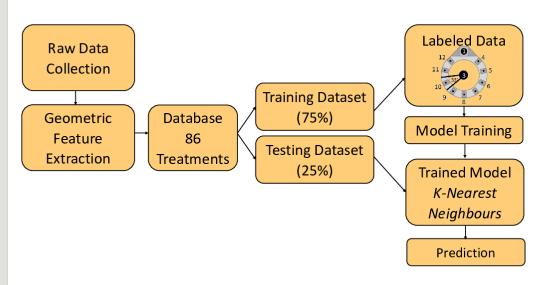


Figure 3. Machine learning model development workflow. The process of splitting the database into training and testing datasets to train model and evaluate performance was repeated for 1,000 iterations.

Results

- Classification metrics evaluated over 1,000 iterations (Table 1), micro-averaged for data imbalance
 - F1 Score: harmonic mean of precision and recall
 - Hamming Loss: measure of disagreement between the needles predicted by machine learning and the clinical selection
- F1 Scores for each needle calculated to determine individual classification performance (Figure 4)
- Lower F1 scores for certain needles can be attributed to the infrequent use of these needles clinically

Metric	Definition	Micro-Average
Precision	$\frac{\text{TP}}{\text{TP+FP}} \cdot 100$	84.2% ± 4.2%
Recall	$\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FN}} \cdot 100$	83.9% ± 4.7%
F1 Score	$2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}} \cdot 100$	83.9% ± 3.5%
Hamming Loss	$\frac{\text{FN+FP}}{\text{TN+TP+FN+FP}} \cdot 100$	12.8% ± 2.8%

Table 1. Average model performance metrics. Micro-averaged metrics are computed by aggregating all samples and computing the average, as opposed to calculating the metric for each label independently, then computing the average. $TP = True\ Positive$, $TN = True\ Negative$, $FP = False\ Positive$, $FN = False\ Negative$.

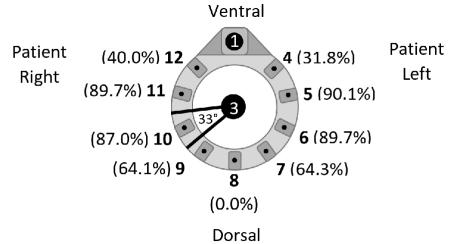


Figure 4. Individual needle F1 Scores (indicated in % in parentheses) for all needle positions (labelled 4-12).

Conclusion

Model demonstrated high predictive accuracy (83.9% F1 Score), with most incorrect predictions coming from infrequently used needles (12.8% for Hamming Loss). This illustrates the potential for machine learning to be a powerful predictive tool for guiding needle selection but highlights the need for more data.

In combination with an applicator selection model, the addition of needle selection capabilities will **aid in developing a comprehensive applicator selection framework** that aims to increase uniformity in the decision-making processes involved in HDR cervical brachytherapy.