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INTRODUCTION

The paradigm shift towards Quantitative Image Analysis (QIA) is becoming increasingly
attractive for the modern imaging system. The emerging field radiomics is a typical example
of QIA. Motivated by the concept that biomedical images contain pathophysiology
information, the goal of radiomics is to convert the medical images into mineable high-
dimensional image features, which may decipher the underlying bio-information [1]. Typical
radiomics is designed to construct the feature vector from a segmented image (e.g., tumor)
and analyze the results in a patent-by-patient manner. It is reasonable to the hypothesis
that generalizing the conventional radiomics down to the voxel-level, i.e., voxel-based
radiomics (VBR) analysis, could significantly expand the richness of the potential bio-
information database and interpret the image resources more efficient.

This work investigated the association between regional pulmonary function and VBR
features maps extracted from the lung computed tomography (CT) images. It is well-known
that lung function can be interpreted by the expert based on CT image characteristics (e.g.,
bronchial thickening, honeycombing) [2]. However, such a phenomenon is typically difficult
to measure and quantify. The quantitative VBR approach has the potential to reflect these
observations objectively and may serve as a clinical complement to the radiologist
ultimately.

RESULTS

* Figure 2 demonstrates the visual assessment of 57 feature maps extracted from one of 46 patients in VAMPIRE Dataset. The upper left panels are the original input CT and
corresponding DTPA-SPECT slice. The RefVI scan exhibits defects in both the left upper lobe (LUL) and right upper lobe (RUL). A small number of feature maps successfully detect the
defects in both lobes, such as feature #1, 5, 23, 34, 36, 38, 39, 50, and 52. And several other features are only able to detect the major defect that existed in the LUL, which include #10,
14, 18, 26, 30, 31, and 32. Moreover, a few features display high values in the upper lung defect region, see feature #13, 22, 27, 28, 29, 33, 35, 37, 43, 49, 51, and 53, which can be
considered as negatively associated with the lung ventilation distribution.

* The box plots in figure 3 show the distributions of voxel-wise Spearman p evaluated between all 57 features and their corresponding RefV| scans (Galligas PET or DTPA-SPECT) for 46

patients. In each box, the central mark indicates the median, and the bottom and top edges indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most

extreme data points that not considered as outliers, and the outliers are plotted individually using the “+” symbol. The feature maps are ranked in descending order from left to right

based on the median value of p.

Considering the correlation performance for both Galligas PET and DTPA-SPECT studies, the overall highest correlations archived by feature #30, i.e., GLRLM-based run length non-

uniformity, with 0.21 < p < 0.65 (median = 0.45) for Galligas PET study and 0.29 < p < 0.63 (median = 0.45) for DTPA-SPECT study. The second-highest ranked feature is #1, I-based

Energy, with 0.05 < p < 0.70 (median = 0.48) for Galligas PET study and 0.13 < p < 0.74 (median = 0.43) for DTPA-SPECT study. Moreover, for both studies, the strongest negative

correlations come from feature #33, 35, 37, and 51. Specifically, p is approximately in the range [-0.01, -0.70] (median = 0.485) and [0.09, -0.60] (median ~ 0.30) for Galligas PET study

and DTPA-SPECT study, respectively.

Compared with 37 CTVI algorithms submitted by VAMPIRE Challenge participants [3], the correlation performance of our feature map #1 and #30 exceeds 36 algorithms, and only

slightly inferior to No. 20 CTVI algorithm (range: 0.27-0.73, median: 0.49).
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Figure 2. Visual comparison of RefVl scans (DTPA-SPECT) and corresponding 57 feature maps generated by voxel-based radiomics technique. The
upper left panels are the original input time-averaged CT and corresponding DTPA-SPECT slice. The rest panels are 57 feature maps with feature #
indicated in the top left corner. The RefVl is normalized to [0, 1] and superimposed over the CT at a common coronal slice location for better

P U R PO S E D ISCU S SI O N AN D CO N C I_U SI O N S visualization. Similarly, each feature map is normalized with the same strategy as the RefVI to provide a similar visual contrast.

We employed the VBR analysis technique to investigate the potential association of spatially-encoded radiomics features extracted from lung CT images with the e Quantitative correlation analysis identified that voxel-based radiomics feature maps extracted from lung
pulmonary function measured by ventilation scintigraphy. CT images are partially associated with pulmonary function measured by Galligas PET or DTPA-SPECT

= 1 M - T
ventilation image. U?QHQHQQ
SR

-

Q

=

£

o]

=

-
1

—[ =+
-—CT-—
+ = -

I-based energy measures the square of intensity within the image. Higher energy corresponds to denser 0
content. GLRLM-based run length non-uniformity assesses the distribution of runs over the run lengths,

M ETH OD and a lower value indicates more homogeneity among run lengths in the image. The negatively correlated

features #33, 35, 37, and 51 emphasis the low density, heterogeneous coarse structural texture.

* An in-house VBR calculation platform was developed to generalize the conventional image-based radiomics to the voxel level. As in Figure 1, to extract the radiomics Collectively, these features together evidence that the homogeneous dense pulmonary CT image often
features at each voxel, we utilized a 3D sliding window to define a spatial kernel by aligning the voxel of interest with the centre of the window. 57 radiomics features presented as high radiotracer signal, while the regional lung CT content with low density heterogeneous
were subsequently calculated within such a rotationally-invariant kernel. By traversing the window over the entire volume, each voxel in the original image can be coarse structural texture is often shown as a lack of radiotracer. This results are consistent with the
expressed as a 57-dimensional radiomics feature vector. Consequently, 57 feature maps with the same spatial dimensions as the input image were generated. findings based on conventional lung-segmented image-based radiomics analysis by Lafata et al. [2]

* The VBR technigue were employed to extracted the feature maps from total of 46 lung CT images in VAMPIRE Galligas PET and DTPA-SPECT Dataset [3]. To test the Compared with the 4DCT-based CTVI method, the VBR analysis severs as several advantages: (1) the
technique as a potential pulmonary biomarker, we subsequently compared the generated feature maps to corresponding reference ventilation images (RefVls, e.g., performance of its correlation distribution is better than most VAMPIRE CTVI algorithms; (2) it is easy to
Galligas PET or DTPA-SPECT) as ground truth for pulmonary function based on voxel-wise Spearman coefficients (p). implement since the calculations are based on the ready-made and well-defined radiomics features; (3) it

* Computed Tomography Ventilation Imaging (CTVI) is another imaging analysis technique that derives regional lung function information from respiratory-correlated only utilizes the time-averaged CT frame instead of 4DCT, which avoids the uncertainty introduced in the Radiomics Feature #
CT datasets. In the VAMPIRE Challenge, total of 37 individual CTVI algorithms are submitted by participants and have been evaluated against the corresponding RefV| deformable image registration (DIR) process.
using Spearman coefficient [3]. Due to similar purposes, same dataset, and the same correlation analysis methods, our results can be directly compared with This study is just an application of a VBR in lung texture analysis, which is only one aspect of a typical ) : ] = )

i i i K . . i . . ) plot represents a specific feature maps # and RefVl modality (Galligas PET or DTPA-SPECT]. In each box, the central mark indicates the median, and
VAMPIRE CTVI algorithms to assess the overall performance relative to conventional 4DCT-based techniques. radiomics scope. Besides that, it is reasonable to hypnosis that the VBR technique can be extended to a the bottom and top edges indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not considered
broader range of applications, such as differentiating benign and cancerous tissue of other body sites, outliers, and the outliers are plotted individually using the “+” symbol. The feature maps are ranked in descending order from left to right based on

— Ty ! Associati ™ characterizing intratumoral information, assisting prognostic assessment, and combining with the the median value of p.

9 | G L ooy Scenati _ Segmented Lung Feature Map radiogenomic to personalize treatment, etc.
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Figure 3. Spearman correlation (p) distributions evaluated between each voxel-based radiomics feature maps and the corresponding RefVI. Each box
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