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INTRODUCTION ALGORITHM RESULTS

Dual-energy (DE) x-ray imaging has a long history of practical CNR for the virtual phantom, shown in Fig. 1, is defined as ALGORITHM’S DATA REPRESENTATION OPTIMAL SPECTRA ADJUSTED NEAR OPTIMAL PARAMATERS
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Table 1: Near-optimal DE filtration parameters for sot-tissue images
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The optimization should include clinically related constraints, such table, with Z from 1 to 83, except for radioactive, gases, liquids, and highly Table 3,4: DE parameters for soft tissue (top) and bone (bottom) only images with no filtration
as patient size, patient dose, detector dynamic range, and x-ray reactive elements. For one energy pair these parameters form a 6D space. At PHANTOM AND FILTERS EXPERIMENTAL RESULTS
tube limits. Three patient sizes were considered: small, medium, each point, three quantities were calculated: CNR, equivalent surface dose Soft tissue  Tumor . i
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Region A Region B Region C and the corresponding combination of parameters was obtained. The same Figure 6. Left: Phantom representing large patient size (40 cm soft tissue, 3 cm of bone).  Figure 7. From left to right: Single energy image, DE with no filtration, DE with filtration. ROI A and C used to calculate bone cancellation
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Figure 1. Virtual phantom to calculate CNR. "t'?.z are initial spectra of HE, LE beams with SA"B'C £ i £ i H
resulting signals of the attenuated spectra as incident at the detector for regions A, B, andlczrespectively. ) ) The developed algorithm allows for optimization of the filtration and beam parameters, leading to maximized CNR, while considering all clinical é‘h’gﬁzeg:’Di:ttrag}lE?eg{riecr;?rgrﬁgﬁgsggsmsltgf:f;n:jtbor:}\:gr;?t?o%ighy
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Each combination of filter/beam parameters was checked The altg.orltthm |5er:1pll\r-.;1mte|n;ed n II\I/IT.tlatl? anic:i dT;ermlnes thedoitr:mal setof para;nete;s by comp:tlntg c?verfl() pDStSIb|E cfo.mblnat(lzns. In orditr :o opt)lmlze Punnoose J, Xu J, Sisniega A, Zbijewski W, and Siewerdsen JH,
against constraints on the flat panel detector dynamic range, execution time, the Matlab parallelization toolbox was used. The average run time for one patient size for one type of image (bone or soft-tissue) was Technical note: SPEKTR 3.0 a computational tool for x-ray spectrum

patient sizes, and dose limitations. Constraints were taken from ACKN OWLEDGEME NTS reduced to about 1.5 hours. The total optimization time (all patient sizes, bone, and soft tissue images) is about 9 hours. modeling and analysis Medical Physics 43(8), 471117, 2016

a previous study [3]. Optimization was conducted for ExacTrac system parameters, but the algorithm, in general, can be implemented for any system. The optimal filtration pair
Obtained beam/filter parameters were manually unified, in The authors would like to thank Alan Spurway for help with Monte Carlo was identified for each patient's size. This resulted in a combination of three pairs of filters with different materials and thicknesses. This set was reduced
simulations and Sahar Darvish-Molla for fruitful discussions. This work was to a combination of two materials with different thicknesses, namely:
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* Monte Carlo model [4] was used to obtain scatter-to-primary
ratios (SPR) for different regions of interest.
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order to reduce the variations in the choice of filters and their
thicknesses, while retaining CN R near the optimal value.
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