

Integration and Testing of Dynamic Collimation System Controller for Pencil Beam Scanning Proton Therapy

Kaustubh A. Patwardhan¹, Theodore Geoghegan¹, Ryan Flynn¹, Daniel Hyer¹ ¹Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242

INTRODUCTION

- The accuracy of radiation dose delivery for Pencil Beam Scanning (PBS) Proton Therapy (PT) using a Dynamic Collimation System (DCS) depends on the precise and automatic positioning of multiple trimmer blades
- The integration of the DCS controller with the mechanical assembly and the clinical IBA (Louvain-La-Neuve, Belgium) system overcomes this challenge
- The controller precisely positions four trimmer blades within a required tolerance of ±0.5 mm before each spot delivery for PBS-PT to maximize the improvement in lateral dose falloff

METHOD

- A DCS prototype was built consisting of two pairs of orthogonal nickel trimmers moved by linear motors (Figure 1)
- The motors were interfaced with the DCS controller using ACS Motion Control (Yokneam Illit, Israel) software (Figure 2)
- The DCS controller was interfaced with the real-time IBA scanning controller using the analog input/output (I/O) modules of the DCS controller
- The interface was tested and verified by the IBA scanning controller providing setpoints to the DCS controller in the form of trimmer positions and receiving real-time feedback on the actual trimmer positions
- Motors were stress-tested and characterized for their speed and positional accuracy to identify the latency of the DCS

DCS Model and Prototype

Medical Physics, 2020), b. DCS prototype

DCS Integration

Figure 1: a. DCS Model (Geogheghan et al., Figure 2: DCS controller interface with the DCS mechanical assembly

RESULTS

- Positional accuracy of the system was verified using a FaroArm Laser Scanner (Lake Mary, Florida)
- Maximum values of motion parameters that resulted in a system that could be tuned to be critically damped were found to be: velocity = 3000 mm/s. acceleration = 40000 mm/s² and jerk = 50000 mm/s³
- The prototype DCS controller was shown to position the trimmers within the required tolerance level (±0.5 mm) prior to beam delivery with an accuracy
- Latency of the DCS controller was found to be 0.6 ms

DCS Positional Accuracy Verification

Stroke Length (mm)	Measured Stroke Length (mm)	Difference (mm)
1	0.9654	0.0346
2	2.0133	0.0133
5	5.0055	0.0055
10	9.9917	0.0083
20	20.0153	0.0153
40	39.9824	0.0176

Table 1: Positional accuracy verification using FaroArm

DCS Trimmer Motion Profiles

Figure 3: Trimmer motion profiles for two stroke lengths of 20 mm and 40 mm at JERK = 50000 mm/s³

CONCLUSIONS

- The DCS controller can be successfully integrated with a commercial IBA Pencil Beam Scanning Proton Therapy system
- The DCS controller can be used to accurately and automatically position the trimmers for treatment delivery, ultimately improving dose conformity

REFERENCES

Geoghedhan et al., Design of a focused collimator for proton therapy spot scanning using Monte Carlo methods, Medical Physics, 2020.

ACKNOWLEDGEMENTS

- Research reported in this work was supported by the National Institutes of Health under award number R37CA226518
- We would like to thank the Engineering Machine Shop at the University of Iowa for providing the FaroArm scanner

CONTACT INFORMATION

Kaustubh A. Patwardhan, kpatward@healthcare.uiowa.edu