

The effect of spatiotemporal variations in thermal neutron transmission on Yb-169 source re-activation efficiency

Ryan T. Flynn, Quentin Adams, Karolyn Hopfensperger

Department of Radiation Oncology, University of Iowa Hospital and Clinics

PURPOSE

Commercializing intensity modulated brachytherapy techniques based on partially-shielded intrauterine or interstitial applicators necessitates the cost-effective production of intermediate energy sources. ¹⁶⁹Yb is a promising but expensive isotope for this purpose, with 93 keV average γ-ray energy.

Re-activating a single ¹⁶⁹Yb source 10+ times in a nuclear reactor was theoretically shown to reduce cost by ~75% relative to conventional single-activation sources. Substantial spatiotemporal variation in isotopic source composition occurs between activations via ¹⁶⁸Yb burnup and ¹⁶⁹Yb decay, altering neutron transmission and cost per reactivation.

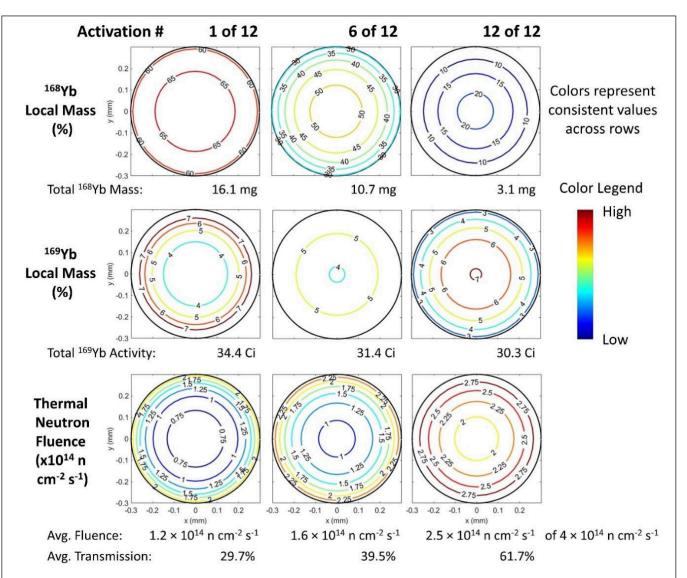
These effects are accounted for to maximize the efficiency of the ¹⁶⁹Yb re-activation process.

METHODS

A computational framework to model timedependent neutron transport, isotope transmutation, and decay was developed.

Thermal neutron flux within each cylindrical subvolume was calculated using ray-tracing through the spatiotemporal dependent isotopic composition throughout the source, accounting for thermal neutron attenuation along each ray.

Re-activation of a ¹⁶⁹Yb source constructed of 82%-enriched ¹⁶⁸Yb-Yb₂O₃ was modeled, with active dimensions of 0.6 mm diameter, 10.5 mm length, a volume of 3 mm³, and a density of 8.5 g/cm³.


RESULTS

Cost has impeded the clinical implementation of ¹⁶⁹Yb. ¹⁶⁹Yb is generated by irradiating an expensive precursor material containing ¹⁶⁸Yb, such as 82% enriched ¹⁶⁸Yb-Yb₂O₃ (~\$692/mg, 25 mg needed per source), with thermal neutrons in a nuclear reactor. Re-activating the ¹⁶⁹Yb sources 10+ times could result in major cost savings (~75%) relative to conventional single-activation sources.

Re-activating sealed sources is not standard practice and successfully doing so accurately estimating the length of time to place the source into a thermal neutron flux for each reactivation.

The re-activation time is dependent upon the average thermal neutron fluence inside the source, and ¹⁶⁸Yb and ¹⁶⁹Yb have very high thermal neutron absorption cross sections, making the thermal neutron transmission in the source and therefore the neutron fluence time-dependent. 3-D spatiotemporal modeling of re-activated ¹⁶⁹Yb sources is unexplored but relevant when estimating the cost of the approach. We developed a novel computational framework to calculate the spatiotemporal dependence of isotopic composition that accounts for isotope transmutation, decay, and thermal neutron transmission over the entire live cycle of a ¹⁶⁹Yb source (10+ activations).

Axial cross sections of the 0.6 mm diameter, 10.5 mm long 169 Yb source are shown in Figure 1 at varying stages throughout the reactivation process. Twelve total re-activations were modeled. Average thermal neutron transmission throughout the active source more than doubled between the first activation and the eleventh (final) re-activation, increasing from 29.7% to 61.7%. The new model predicts a 32% reduction in the reactor-time needed per clinic-year of 169 Yb activity produced at a reactor flux of 4 × 1014 n cm $^{-2}$ s $^{-1}$ relative to a model that does not account for spatiotemporal changes in thermal neutron transmission.

Axial cross-sections through the geometric center of the 0.6 mm diameter \times 10.5 mm long active ¹⁶⁹Yb source for 3 different activations (1, 6, and 12 of 12, by column) indicating (top row) ¹⁶⁸Yb and (middle row) ¹⁶⁹Yb distribution as percentages of local mass and (bottom row) thermal neutron fluence given a reactor fluence of 4×10^{14} n cm⁻² s⁻¹. The ¹⁶⁸Yb distribution (top row) is most concentrated at the active source core throughout all activations, ¹⁶⁹Yb distribution (second row) is most concentrated at the active source edge for activation 1 of 12, relatively flat by activation 6 of 12, and concentrated at the core by activation 12 of 12.

CONCLUSIONS

Accounting for spatiotemporal changes in thermal neutron attenuation within a reactivatable ¹⁶⁹Yb source demonstrates a 32% reduction in reactor time per clinic-year needed to generate the ¹⁶⁹Yb sources.

This finding increases the feasibility of the ¹⁶⁹Yb approach to enabling intensity modulated brachytherapy approaches such as rotating shield brachytherapy or direction-modulated brachytherapy.

CONTACT INFORMATION

Ryan Flynn, PhD ryan-flynn@uiowa.edu

Conflict of Interest: RTF is the President of pxAlpha, LLC, which is developing an RSBT delivery system.