

The use of artificial intelligence to auto-segment organs-at-risk in total marrow irradiation treatment

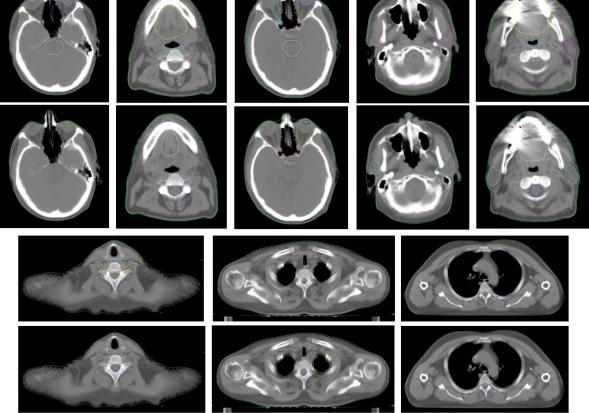
An Liu¹, Richard Li¹, Chunhui Han¹, Jieming Liang¹, Ashwin Shinde¹, Savita Dandapani¹, Arya Amini¹, Scott Glaser¹, Jeffrey Wong¹ ¹ Department of Radiation Oncology, City of Hope Medical Center, Duarte, CA

INTRODUCTION

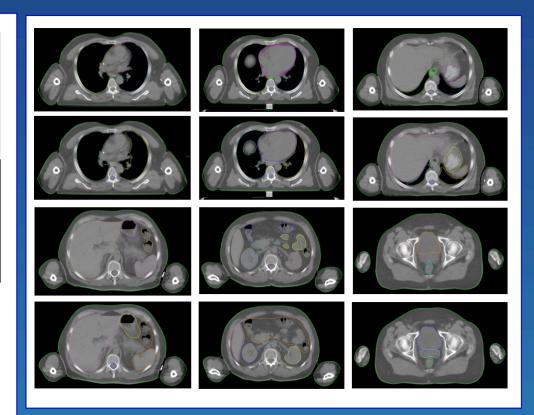
Treatment planning for total marrow irradiation(TMI) is a time-intensive process requiring the contouring of many organs-atrisk(OARs) throughout the entire body. Autosegmentation using Artificial intelligence can significantly reduce the contouring time and make TMI treatment planning more efficient.

AIM

This study evaluated the quality of contours auto-generated by a deep learning (DL) contouring algorithm for OAR volumes in TMI.


METHOD

- 1. The first ten patients in a phase II trial treated with TMI were selected for evaluation.
- 2. Dose prescriptions were 20 Gy to bone/lymph nodes/spleen and 12 Gy to liver/brain delivered over 5 days, twice daily.
- 3. Each patient had more than 150 slices/30 structures to contour and took approximately 6-8 hours of dosimetrist time per patient.
- 4. Clinically used contours drawn by human were used as the reference.
- 5. A deep machine learning model (Ua-Net, DeepVoxel Inc, Irvine, CA) was used to autosegment the OARs.
- 6. We evaluated the performance of this DL model using 3 spatial overlap based metrics (Dice coefficient, Jaccard index(JAC) and True positive rate sensitivity(TPR)), 2 surface distance metrics (95% Hausdorff distance(HD) and average distance(AD)), 1 volume similarity index(VS).
- 7. Eighteen common OARs were evaluated.


RESULTS

The DL auto-segmentation model was most similar to human generated contours for eyes, parotids, heart, liver, kidneys, spleen and lungs where average Dice, JAC, TPR, HD, AD, VS in DL model were 0.85(range 0.76-0.95), 0.72(0.62-0.91), 0.85(0.74-0.98), 14.4(7.5-24.6). 4.4mm(2.0-7.9) and 0.92(0.88-0.97) respectively. Other OARs still needed improvement. Several factors contributed to the difference. The training CT dataset used for abdomen and pelvis had patients in arms-up position, but TMI patients were simulated with arms on the side. The model was trained to draw the spinal cord in contrast to the reference where spinal canal was drawn. On the right, the DL model generated contours (top rows) and corresponding human contours (bottom rows) are shown for a typical

TMI patients at various body levels.				and the same of th			
	Dice Coefficient	Jaccard Index	True Positve Rate Sensitivity	95% Hausdorff Distance	Average Distance	Volumetric Similarity	Dice Score: The volumetric Dice similarity coefficient (DSC) measures the volume overlapped between the AS and manual delineations. $2(M_{\odot} \cap M_{\odot})$
Bowel	0.490	0.329	0.345	58.612	16.431	0.553	$DSC = \frac{2(M_p \cap M_g)}{M_p + M_g}$
Esophagus	0.516	0.360	0.390	20.229	6.170	0.600	P 8
Eyes	0.811	0.687	0.748	8.574	2.717	0.892	Hausdorff Distance: HD describes the similarity
Heart	0.802	0.677	0.805	24.636	7.498	0.941	between two sets of points by measuring the
Kidney left	0.683	0.528	0.531	18.325	6.641	0.688	maximum distance of a point in ${\it M}_p$ to the nearest
Kidney right	0.639	0.490	0.498	21.424	8.428	0.655	point in M_g . $HD = max\{h(M_p, M_g), h(M_g, M_p)\}$
Larynx	0.601	0.440	0.854	32.990	10.538	0.713	(p. g/. (g. p/)
Lens	0.527	0.371	0.470	14.304	6.579	0.728	$h(M_p, M_g) = \max_{a \in M_p} \min_{b \in M_g} \ a - b \ $
Liver	0.825	0.716	0.743	23.931	7.927	0.882	$a \in M_p$ $b \in M_g$
Lung left	0.948	0.902	0.983	7.511	2.032	0.960	$ S^1 \cap S^1 $ TP
Lung right	0.950	0.906	0.975	9.634	2.281	0.968	Jaccard Index $JAC = \frac{\left S_g^1 \cap S_t^1\right }{\left S_g^1 \cup S_t^1\right } = \frac{TP}{TP + FP + FN}$
Optical nerves/chiasm	0.356	0.225	0.254	13.603	6.070	0.555	$ S_g \cup S_t $
Oral cavity	0.613	0.448	0.746	19.041	9.165	0.797	Sensitivity $Recall = Sensitivity = TPR = \frac{TP}{TP + FN}$
Parotids	0.757	0.620	0.850	11.860	3.848	0.884	Recall = Sensitivity = $TFR = \frac{1}{TP + FN}$
Spinal cord	0.668	0.504	0.576	154.827	34.250	0.828	Valuma atula Cina ila vitu.
Spleen	0.615	0.483	0.504	23.692	10.036	0.675	Volumetric Similarity
Stomach	0.479	0.336	0.348	55.042	21.494	0.511	$VS = 1 - \frac{ S_t^x - S_g^x }{ S_t^x } = 1 - \frac{ FN + FP }{ S_g^x }$
Thyroid	0.609	0.450	0.515	11.443	3.906	0.780	$VS = 1 - \frac{\left \left S_t^1 \right - \left S_g^1 \right }{\left S_t^1 \right + \left S_g^1 \right } = 1 - \frac{\left FN + FP \right }{2TP + FP + FN}$

$$VS = 1 - \frac{\left\| S_t^1 \right\| - \left| S_g^1 \right\|}{\left| S_t^1 \right| + \left| S_g^1 \right|} = 1 - \frac{|FN + FP|}{2TP + FP + FN}$$

CONCLUSIONS

DL auto-generated contours from a convolutional neural network model showed promise to replace human generated ones for many OARs for TMI planning, with potential to be adopted in routine clinical practice and significantly reduce the lengthy contouring time. Future models may allow for auto-contouring of more organs to further reduce dosimetrist time.

ACKNOWLEDGEMENTS

Special thanks to Professor Xiaohui Xie, Department of Computer Science, University of California, Irvine and Dr. Narisu Bai, DeepVoxel, Inc., Irvine, CA for help with the AI model.

CONTACT INFORMATION

An Liu. Ph.D. City of Hope National Medical Center aliu@coh.org