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INTRODUCTION

Despite a clear clinical need, there are no generalizable tools to distinguish between Alzheimer’s
Disease (AD) and Mild Cognitive Impairment (MCI), or to identify patients who will progress from
MCI to AD. Significant work has been done to develop deep learning networks for this purpose.
However, models employing '8F-FDG PET images and longitudinal data are underdeveloped yet

may offer distinct advantages over other models.'23

The goal of this work was to develop a comprehensive convolutional neural network
(CNN) to diagnose AD and MCI and to predict disease progression using '®F-FDG PET

images.

DATASET

787 FDG PET scans and corresponding clinical data from the Alzheimer's Disease
Neuroimaging Initiative (ADNI) database were compiled. Each scan was classified as normal
control (NC), stable MCI (sMCl), progressing MCI (pMCI), or Alzheimer’s Disease (AD).

O A scan was classified as sMCI if that patient was never diagnosed with AD within the length

of the study.

O A scan was classified as pMCI if that patient was diagnosed with MCI at the time of the scan,
but would later convert to AD.

Number of scans
Mean Age
Mean MMSE

AD

170
77.2
209

pMCI

(TTC=3yr)

190

(TTC>3yr)
104

75.4

27.0

sMCI

125
74.9
28.0

NC

198
7.7
29.1

The pMCI patients were further
classified using longitudinal
information. Time to conversion

(TTC) for each pMCI scan was
calculated as the difference between
the date of the current scan and the
future date of diagnosis of AD. The
pMCI group was thus refined by
whether or not a patient would

Table 1: Description of the dataset obtained from ADNI and used in this study. convert to AD within three years

METHODS

The 3D-CNN used here was adapted from previous work by Spasov et al.> The model architecture, shown in
Figure 2, employs 3D separable and grouped convolutional layers along with several fully connected layers,
keeping the number of parameters relatively low to limit overfitting. Model inputs included 3D-FDG PET images
and clinical data (age, gender, and MMSE cognitive test score).
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Figure 2: Model architecture of the 3D-CNN used in this work.
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Figure 3: Description of each of the blocks used in the model architecture. Figure
adapted from Spasov et al.®
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The pMCI patients with TTC > 3 years
were combined with the sMCI group to
create a 4-class deep learning model
to classify AD, pMCI (<3yr), sMCI, and
NC. Training was optimized for
accuracy holding 15% of the scans for
validation and testing. The model was
trained until loss convergence of
validation and ftraining sets. An
example learning curve is provided in
Figure 4.
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Figure 4: Example learning curves for the training
and validation sets. A small amount of overfitting
can be observed after the 15t epoch.

CONCLUSIONS

We have developed a functional model which
can both distinguish various stages of the
Alzheimer’s Disease spectrum as well as predict
the conversion of MCI to AD within three years.

The model achieved an AUC greater than 0.72
for each of the four classes: AD, pMCI, sMCI,
and NC.

NEXT STEPS

We plan to continue to improve the performance
of the model by adding capacity to the network
and increasing the size of the dataset.

Onre limitation of the longitudinal information is
the large uncertainty on the TTC value due to
inconsistencies in scan acquisition. Future study
will thus explore the sensitivity of the TTC
classification of the pMCI patients, and the ability
of the model to distinguish multiple classes of
pMCI scans with varying ranges of TTC values.

DATA PRE-PROCESSING

The data were obtained from the ADNI database with the minimum amount of pre-processing
offered. Each FDG PET scan was then pre-processed using Statistical Parametric Mapping
(SPM12). Brain extraction, rigid registration to a custom FDG template, spatial normalization to
the Montreal Neurological Institute (MNI) space, and global mean intensity normalization were

performed on each image.

Figure 1: Example preprocessed FDG PET scans from (A) a patient diagnosed with AD, (B) a patient
diagnosed with MCI, and (C) a normal control patient.

RESULTS

Performance was assessed using ROC analysis. The model achieved an area under the curve (AUC) of 0.873,
0.808, 0.788, and 0.729 for the AD, pMCI, sMCI, and NC classes, respectively. The ROC curve is shown in Figure
5. The normalized confusion matrix (Figure 6) provides a visual representation of how frequently each class was
predicted for each of the classes.
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Figure 5: ROC curve for the 4-class model.
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Figure 6: Confusion matrix showing the relative 4-class model
performance, normalized by the total number of scans.
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