

Rapid Delivery of GRID Therapy for Deep-Seated Bulky Tumors: A Novel 3D MLC-Based Forward Planning Treatment Technique via 10MV-FFF Beam

Damodar Pokhrel, PhD, Lana Sanford Critchfield, MS, Matthew Halfman, MS, Mark E Bernard, MD, William St Clair, MD, PhD,

Marcus Randall, MD and Mahesh Kudrimoti, MD

Medical Physics Graduate Program

Department of Radiation Medicine, University of Kentucky, Lexington KY USA

INTRODUCTION

- Treating deep-seated bulky tumors with conventional single-field Cerrobend GRID-blocks has many limitations such as suboptimal target dose and excessive skin toxicity.
- Lifting of heavy traditional physical GRID-blocks poses a serious concern for patient safety at various slanted gantry-angles. 1, 2
- Dosimetric detail is not readily available without a GRID template in user's treatment planning system.

AIM

To present our novel 3D MLC-based forward-planning technique ³ for rapid delivery of GRID therapy via flattening filter free (FFF) beams, providing ablative doses to bulky tumor using a brachytherapy-like dose tunnelling for the target and sparing adjacent critical structures.

METHOD

- Ten patient plans (4 head/neck, 3 chest, 1 para-spinal, 1 pelvis, 1 liver) were used retrospectively.
- Tumor sizes ranged 6.5-13.0 cm (mean, 9.5 cm).
- Standard Millenium120 MLC leaves fitted to gross tumor volume (GTV) generated 1 cm diameter holes and 2 cm center-to-center distance (at isocenter, similar to traditional single-field GRID-block), using an in-house algorithm.
- For a single-dose of 15 Gy, plans use 6-coplanar differentially-weighted 10MV-FFF beams at 60° spacing with 90° collimator rotation, generated dose tunnelling distributions without post-processing GTV-contours.
- Acuros-based dose was calculated in Eclipse.
- We evaluated GTVD50%, GTVD10%, GTV dose heterogeneities (peak-to-valley dose ratio, PVDR), dose to adjacent critical organs, maximum dose 2 cm away from the GTV (D2cm).
- Treatment planning and delivery time were recorded.

RESULTS

<u>Fig. 1</u>. Axial, coronal and sagittal views of isodose colorwash for a GRID-therapy patient planned using 10MV-FFF (2400 MU/min) beam and 3D-MLC-based forward planning approach. Nominal prescription dose was 15 Gy in 1 fraction for a bulky liver mass of 8.0 cm in diameter (see red GTV contour). The GTVD50% and GTVD10% of 8.1 Gy and 13.2 Gy were achieved with D2cm of 68%. The PVDR was 2.9, by enabling escalated central tumor peak dose of 18 Gy (see cross-hair in above figure isodose colorwash, due to the characteristics of FFF-beam profile and a novel 3D planning technique). Maximum and dose to 5 cc of skin were 6.6 Gy and 5.3 Gy respectively. Immediately adjacent critical structures were spared including maximum dose to right kidney (< 3.8 Gy)

- Our 10MV-FFF (2400 MU/min) rapid GRID plans exhibited high mean GTVD50%, GTVD10% for 15 Gy of 8.2 ± 0.7Gy (range: 7.2–9.9 Gy) and 13.5±0.7 Gy (range: 12.4–14.6 Gy), respectively, escalating central tumor dose to 18 Gy.
- Average PVDR and D2cm was 3.1±0.3 (range: 2.7–3.8) and 69.1±10.6% (range: 58.4–87%), respectively.
- Averaged maximum and dose to 5 cc of skin were 11.4±3.2 Gy (range: 6.7–14.7 Gy) and 7.2±2.9 Gy (range: 1.2–10.4 Gy), respectively.
- Spinal cord (<6.0 Gy), heart (<5.5 Gy) and small bowel (<4.5 Gy) were spared.
- Average monitor units and beam-on time was 2306 ± 174 and 1.01 ± 0.1 min, respectively.
- Planning time was under one hour.

SUMMARY/CONCLUSIONS

- This novel 3D MLC-based forward planning approach via 10MV-FFF beam generated brachytherapy-like dose tunneling distributions by utilizing cross-fires MLC fields.
- Our 10MV-FFF beam rapid GRID-therapy enhanced target dose for bulky tumors.
- It provided low dose to adjacent organs and including skin.
- This simple and fast FFF-GRID treatment can be easily adopted in any radiotherapy clinics.
- It provides detailed dosimetric information and could provide same day treatment for bulky masses by eliminating longer inversely-optimized planning and physics quality assurance time.
- Rapid GRID delivery secures PVDR and potentially improves patient comfort and clinic workflow.
- Clinical validation of 10MV-FFF GRID therapy and radiobiological response of delivering rapid treatment is under investigation.

ACKNOWLEDGEMENTS

Thanks to all the faculty, residents and staff at the department of Radiation Medicine, University of Kentucky for their support & contributions.

REFERENCES

- Meigooni A, Dou K, Meigooni N, et al, "Dosimetric characteristics of a newly designed grid block for megavoltage photon radiation and its therapeutic advantage using a linear quadratic model," Med. Phys. (2006); 33; 3165-3173
- 2. Wu X, Ahmed M, Wright J, *et al*, "On modern technical approaches of three-dimensional high-dose lattice radiotherapy (LRT)." Cureus (2010): 2:e9.
- 3. Damodar Pokhrel, Matthew Halfman, Lana Sanford, et al, "A novel, yet simple MLC-based 3D-crossfire technique for spatially fractionated GRID t therapy treatment of deep-seated bulky tumors, "J Appl Clin Med Phys (2020); 21:68–74

CONTACT INFORMATION

Email: damodar.pokhrel@uky.edu