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INTRODUCTION

Integrated-type proton computed tomography! (pCT)
measures proton stopping power ratio (SPR) images
for proton therapy treatment planning, but its image
quality is degraded due to noise and scatter.
Although several correction methods have been
proposed, correction methods that also allow for
estimation of uncertainty are limited.

AIM

This study proposes a novel image correction
method with uncertainty quantification using a
Bayesian convolutional neural network (CNN).

METHOD

432 noisy SPR images of 6 non-anthropomorphic
and 3 head phantoms were collected with Monte
Carlo simulation?, while true images were calculated
manually using known geometry and chemical
components.

Our proposed method calculates both noise-
corrected SPR images as well two types of
uncertainty images; aleatoric uncertainty mainly
caused by noise inherent in input data, and
epistemic uncertainty in model parameters or
inference?. A DenseNet-based CNN was constructed
to calculate both the corrected SPR image and
aleatoric uncertainty by using a noisy SPR image as
input* (Figure 1). Epistemic uncertainty was
estimated by a Bayesian ensemble approach by
independently training 25 CNN models initialized
with unique random parameter weights. 200-epoch
end-to-end training was implemented for each model
including random flips and 90° rotations of inputs as
data augmentation.

Finally, accuracy of the CNN correction and impact
of the uncertainty images were evaluated by using
48 images of a head phantom as test data.
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RESULTS

1. Accuracy of CNN-corrected SPR images

Figure 2 illustrates uncorrected/corrected SPR images in two different
slices. The CNN model provides more accurate SPR values than
uncorrected images. Mean absolute error in head phantom images was
improved from 0.254 to 0.0538. Computation time for calculating one image
and its uncertainties with the ensemble of 25 CNN models is 0.7 seconds
with a NVIDIA RTX 2080Ti GPU.

2. Correlation between predicted uncertainty and correction error

In addition to corrected SPR images, the CNN model also calculates
quantitative aleatoric and epistemic uncertainty images. Figure 3 shows
noticeable visual correlations between uncertainty and absolute SPR error
in the corrected images. While both uncertainty images have high values at
some overlapping regions, several others show only aleatoric uncertainty
as high (arrows in Figure 3), indicating that SPR errors at these pixels are
mainly input data-dependent. By taking both types of uncertainty images
into consideration together, it is possible to identify potential causes of
correction errors. To further evaluate relationship between the uncertainty
and proton range, water-equivalent thickness (WET) and its total
uncertainty from phantom surface to image center were calculated over one
rotation in all test data. Absolute WET error as a function of the total
uncertainty was plotted in Figure 4. This figure indicates that uncertainty is
correlated with absolute WET error. Since this technique estimates proton
range uncertainty for each irradiated object and beam path, they have great
potential to be used for patient-specific or spot-specific proton range margin
determination.
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Figure 1. Diagram of Bayesian CNN architecture. Blue and orange arrows represent a
single convolutional layer and a DenseNet block with 5 convolutional layers,
respectively. Up-sampling and down-sampling were applied with 2D max pooling and
2D unpooling layers, respectively.
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Figure 2. Comparison of uncorrected and corrected SPR image
with ground truths in two slices. Subtraction of
uncorrected/corrected images from the ground truths are also
shown.
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Figure 4. Correlation between total uncertainty and absolute water-equivalent
thickness (WET) error. A red line represents a 95t percentile curve.
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Figure 3. Comparison of corrected SPR images and two uncertainty images with ground
truths in two different slices. Arrows indicate regions where only aleatoric uncertainty is high.

CONCLUSIONS

A novel pCT image correction method was established using a
Bayesian CNN. Our model is able to predict accurate SPR images
as well as two types of uncertainty quickly. These uncertainties will
be useful to identify potential cause of range errors and develop a
patient-specific or spot-specific range margin criterion. This
technique will be tremendously valuable in uncertainty-guided
proton therapy treatment planning.

ACKNOWLEDGEMENTS

This work was partially supported by Global Center for Biomedical Science and Engineering (a GI-CoRE
Cooperating Hub) at Hokkaido University.

REFERENCES

Tanaka S et al. Improved proton CT imaging using a bismuth germanium oxide scintillator. Phys Med
Biol. 2018;63(3).

Sato T et al. Features of Particle and Heavy lon Transport code System (PHITS) version 3.02. J Nuc/
Sci Technol [Internet]. 2018 Jun 3;55(6):684-90.

Kendall A and Gal Y. What Uncertainties Do We Need in Bayesian Deep Learning for Computer
Vision? Advances in Neural Information Processing Systems 30 [Intemet]. Curran Associates, Inc.;
2017. p. 5574-84.

Paszke A et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. Advances in
Neural Information Processing Systems 32 [Internet]. Curran Associates, Inc.; 2019. p. 8026-37.

CONTACT INFORMATION

Y. NOMURA : yusuke-n@frontier.hokudai.ac.jp



http://www.tcpdf.org

