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INTRODUCTION

Modern radiotherapy stands to benefit from the ability to efficiently adapt
plans during-treatment in response to geometric variations such as those
caused by organs deformation and tumor shrinkage.

A promising strategy is to develop a robust framework which, given an initial
state defined by relevant patient-attributes, can predict future states based on
pre-learnt patterns from a well-defined patient population. This is reminiscent

of the time-evolution of a stationary state in quantum mechanics.

Here, we investigate the feasibility of predicting patient changes across a

fractionated treatment schedule using a joint framework employing quantum

mechanics in combination with deep recurrent neural networks (RNNs).

The expected benefit of a quantum-based framework are: (i) efficient
solutions; and (ii) increased robustness against stochastic uncertainties.
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GEOMETRIC VARIATION MODELING

Quantum and Markov models of tumor volume change were both trained on a 2-layer gated
recurrent unit (GRU) neural network to find the parameters which defined their respective
transition matrices. Predictions were made for N-1 out of N fractions using the fraction
immediately preceding as input; loss was defined as the negative log likelihood error.

Quantum Model

System State [P (1)) = a,|vy) + az|vy) + az|vs) + - + ag|vy)

a; is the probability amplitude of state |v;): |a;|* = p;

Time Evolution Governed by the time-independent Schrédinger equation:

|P(t+ 1)) =U(t+ 1)|¥())

itH
U(t) = e &, isadoubly stochastic transition matrix
H, the Hamiltonian, is a symmetric matrix

Transition Matrix

AIMS

1. Develop a predictive madel for inter-fractional geometric changes in head

and neck cancer patients which treats the conditions of interestas a
stationary quantum state.

2. Benchmark the performance of this quantum-inspired model against a
classical Markov model.

Loss Function

1 N
QLoss = 3 > log(I(®)") ~ log(U(DI¥(t ~ D))

Markov Model

@(t) = p1lv1) + p2|v2) + p3lva) + -+ pLlvr)
pi is the probability of being in state v;

System State

Time Evolution Governed by the forward Kolmogorov equation

DATA ACQUISITION

Volume data for primary clinical target volume (CTV) structures were obtained

from daily cone beam CT (CBCT) images from 104 head and neck cancer
patients who received fractionated radiotherapy at one institution.

The percent change of the primary CTV volumes (with respect to the first

treatment fraction) were converted into unitary state vectors by: (i) mapping
them to discrete state values using Lloyd-Max quantization and (ii) encoding

these states as one-hot vectors.

|lv) € 11000),|0100),|0010),|0001)

P(t+1) =A1DP((T)

A(t) = e?t, is a stochastic transition matrix
Q, the intensity matrix, has positive off-diagonals and sums to
0 within columns.

Transition Matrix

Loss Function
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Flow of information through the RNN for the quantum model. States were fed into a Gated Recurrent Unit
(GRU) neural network to predict the parameters of H.

RESULTS

100 epochs of 5-fold cross-validation were performed for both the Quantum and Markov
models.

Quantum Results
For the quantum model, the final are under the curve (AUC) averaged across the 5 folds was
0.9180 + 0.0039 and 0.8884 + 0.0177 for training and testing, respectively.

Markov Results
For the Markov model, the final AUC averaged across the 5 folds was 0.9330 + 0.0025 and
0.9248 + 0.0100 for training and testing, respectfully.
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Average AUC scores (solid) with standard deviations (shaded) from 5-fold cross validation over 100 epochs.

CONCLUSIONS

This study investigated the feasibility of a novel framework for predicting changes in
patient geometry over time by combining quantum mechanics with RNN techniques to
improve robustness. We then benchmarked this framework against a classical Markov
model.

Our results indicate that predictive information of primary tumor volume can be learnt
from sequential patient data mapped to a discrete unitary state.

There were no substantial differences between the Quantum and Markov models;
however, we acknowledge that the current objective may be too easy of a problem to
exploit the full power of the quantum-based approach.

Future studies will investigate model performance on more challenging predictive
problems including changes in tumor position and predictions farther into the future.
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