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INTRODUCTION

Gliomas are the most commonly encountered malignant brain
tumors. The gliomas can be roughly graded into glioblastoma
(GBM/HGG) and low grade glioma (LGG) and 57.3% of gliomas are
HGG which is more aggressive and infiltrative than LGG. Brain
tumor segmentation using multi-modality MRI scans is critical for
disease diagnosis, surgical planning and treatment assessment.
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Figl: The manual segmentation results of the different substructures are shown in (a).A brain tumor
example(b—e) show four slices with the same position in different MRI scans.
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® Surpassing previous methods due to improved handling of
dataset imbalance

@ Suppressing false-positive classifications
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Fig 5: Comparison of our segmentation result with the ground truth labels.
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METHOD

The data used in experiments comes from BraTS 2019 training set. We use 80%
of the dataset for training(207HGG,60LGG) and the remaining 20% for
validation(52HGG,16LGG). Pre-processing include N4BiasFieldCorrection and z-
score normalization for the brain region. Nonbrain regions are removed. Each pre-
processed image was divided into 27 patches and the patch size is 64x64x64. We
used a cascaded 3D U-Net to segment the brain tumors. The first 3D U-Net uses
four modalities images as inputs, and outputs the mask of whole tumor (WT). The
second 3D U-Net only uses T1ce, T2 and Flair images and the patches which
comprise all three tumor classes are kept for training to segment the WT into three
substructures: edema (ED), tumor core (TC) and enhancing tumor (ET). The depth
of 3D U-Net is 4. P-RelLu and focal loss were used as the activation and loss
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Fig3: The framework of the cascaded 3D U-Net.

Segmentation of substructures

43+48 48 43

function, providing the activation of negative features and the reduction of the
relative loss for well-classified examples.
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Fig2: The flow chart of image preprocessing.
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Figa: The architecture of the 3D U-Net.

Table1. Dice, Sensitivity and Specificity Hausdorff95 measurements of the proposed method on training dataset.

___Whole tumor | Tumor core ___Enhancing tumor

0.91104 + 0.06264 0.82313 £ 0.17412 0.72895 + 0.26661
0.9407 £ 0.06772 0.81506 + 0.18246 0.77544 + 0.21057
0.99221 £ 0.00757 0.99721 £ 0.00477 0.99833 + 0.00197

5.55044 + 12.49017 5.87044 + 6.10405 4.78968 + 6.77919

Dice mean + SD
Sensitivity mean + SD
Specificity mean + SD

Hausdorff95 meant SD (mm)

Table2. Dice, Sensitivity and Specificity Hausdorff95 measurements of the proposed method on validation dataset.

Whole tumor Enhancing Tumor

0.90817 + 0.06135 0.82215+0.17346 0.73125+0.28098
0.91516 + 0.09355 0.849+0.16018 0.84147+0.13609
0.99369 + 0.00594 0.99602+0.00637 0.99851+0.00155
5.61991 + 7.49201 6.33857+6.15973 4.98616+8.82816

Dice mean + SD
Sensitivity mean + SD
Specificity mean + SD

Hausdorff95 mean + SD (mm)
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CONCLUSIONS

There are two distinct advantages of the two-step framework:

The initial segmentation of WT helps suppress false-positive
classifications in non-tumorous areas during subsequent
segmentation step.

The initial WT segmentation of the proposed method also
method mitigates the effect of unbalanced data by reducing
the number of normal tissue voxels in the region of interest.

Combined with the use of focal loss, this method improves
on the previous work by traditional 3D U-Net
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