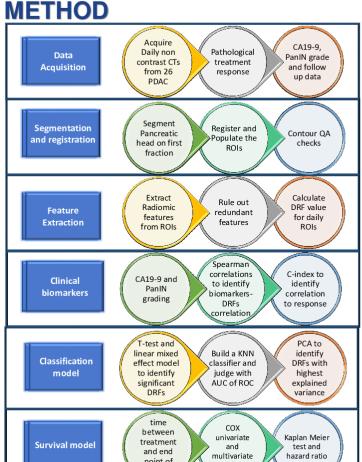


Combining Delta-Radiomics and Clinical Biomarkers Based On KNN-PCA Classification to Improve Treatment Outcome Prediction for Pancreatic Cancer

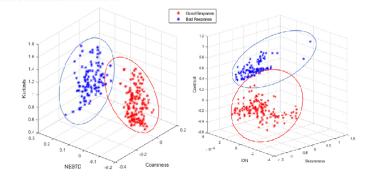
Haidy Nasief¹, William Hall¹, Cheng Zheng², Susan Tsai³, Beth Erickson¹, and X. Allen Li¹

- 1 Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
- 2 Joseph J. Zilber School of Public Health, University of Wisconsin Milwaukee, Milwaukee, WI, United States
- 3 Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States

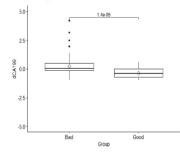

INTRODUCTION

- Pancreatic cancer is one of the leading causes of cancer death in the United States.
- Detecting treatment response in early stages is a critical step that can aid in determining the best treatment plan for these patients.
- CT delta-radiomics is a quantitative tool that can assess the relative net change of radiomic features over time and can be used to predict tumor response.
- Recently we showed that some delta-radiomics feature changes significantly with response and if combined with CA19-9 can lead to a faster discovery of tumor response.

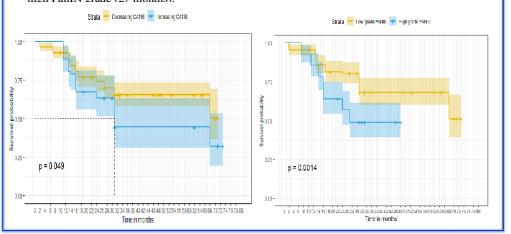
AIM

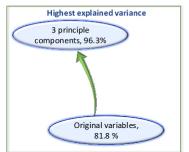

The goal of this study is to extend this work to investigate the effect of including the precursor lesion (PanIN) into the biomarker panel and to determine if a KNN-PCA based classifier can identify appropriate DRFs that can be combined with CA19-9 and PanIN grade to improve treatment outcome prediction

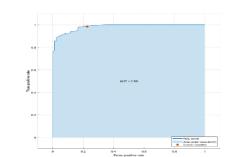
METHOD



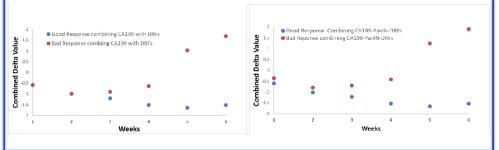
RESULTS


❖ 13 DRF are correlated to pathological treatment response and show significant differences between the two response groups. 3D scatter plot of three DRFs combinations for the 2-4 week of treatment shows a separation between the two response groups. Of these DRFs, CA19-9 and PanIN are each correlated to 3 DRFs.

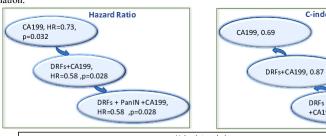

❖ The changes in normalized CA19-9 levels and different PanIN grades were significantly different between the two-response groups. Increasing CA19-9 levels during treatment or a high PanIN grade was correlated to bad response.



- ❖ The Cox proportional multivariate hazard analysis showed that treatment related decrease in CA19-9 levels (p=0.031), low PanIN grade (p=0.03) and DRFs (p=0.001) were independent predictor of survival.
- The univariate analysis showed that patients with decreasing CA19-9 or low PanIN grade has an improved median survival (68 month) compared to those with increasing levels (31-month) and high PanIN grade (27 months).



- Using the original DRFs, the highest explained variance by a single variable was 77%; increased to 80% using one PC while the lowest explained variance dropped from 4.6% to less than 0.04%.
- ❖ The highest explained variance by three variables also increased, from 81.8% to 96.3% enabling a better classification model while reducing dimensionality of data.
- The AUC of the KNN classifier increased from 0.57 using single variable to 0.89 incorporating PanIN-CA19-9-DRFs combination. Using the PCA, the highest explained variance by three variables increased from 81.8% using original variables to 96.3% using 3 PCs. The AUC of the KNN-PCA classifier was further improved to 0.98 with 0.9 accuracy (Figure 4) indicating a better classification model with reduced dimensionality.



Using CA19-9 alone, the earliest significant differences between the good and bad response groups were seen by the 4th week of the treatment as demonstrated by the significant p-values of the t-test. The treatment response prediction shifted to the 3rd week of treatment incorporating CA19-9 with DRFs to 2nd week incorporating PanIN, CA19-9 and DRF-PCs leading to a faster discovery of treatment response

The hazard ratio was reduced from 0.73, p=0.032 with a c-index of 0.69 using CA19-9 only to 0.58, p=0.028 with c-index of 0.87 combining DRFs to CA19-9 to 0.43, p=0.04 with c-index of 0.89 using PanIN-CA199-DRFs combination.

Univaria te a nlysis							
Feature Name	C-index	HR (95% CI)	Coefficient (P)	Feature Name	C-index	HR (95% CI)	Coefficient (P)
Cluster Tendency	0.66	0.87(0.54-1.3)	0.001	CA19-9	0.69	0.73(0.12-0.8)	0.032
Entropy	0.57	0.96(0.22-1.7)	0.008	PanIN	0.57	1.3(1.1-1.5)	0.00023
Coarseness	0.68	0.83 (0.4-1.3)	0.027	Kurtosis	0.59	0.99(0.64-1.5)	0.003
NESTD	0.64	0.98(0.96-1.2)	0.0048	Gender	0.52	1.3(0.48-3.4)	0.63
Multi-variate analysis							
PanIN+2 DRFS	0.72	0.99(0.64-1.5)	1.00E-04	3 DRFs	0.74	0.75(0.1-1.1)	0.006
PanIN+3 DRFS	0.74	0.86(0.53-1.2)	0.046	CA19-9 +2 DRFs	0.73	0.68(0.09-1.07)	0.001
PanIN+CA199+3DR	0.89	0.43 (0.33-0.77)	0.04	CA19-9 +3 DRFs	0.87	0.58(0.14-1.16)	0.028

CONCLUSIONS

- We have introduced a new oncologic profile combining delta radiomics and clinical biomarkers.
- KNN-PCA based classifier can identify appropriate DRF-PanIN-CA199 combinations to improve the predictions of pathology response and survival for CRT of PDAC.
- Once verified with a larger data set, this oncologic profile can be developed into biomarker that has the potential to
- ❖ lead to a faster prediction of treatment response
- increase the prognostic value
- ❖increase the possibility for response-based treatment adaptation
- ❖ and hence, lead to better patient specific outcomes

ACKNOWLEDGEMENTS

This work is partially supported by Manteia Med

REFERENCES

- American cancer society, https://www.cancer.org/cancer/pancreatic-cancer/about/key-statistics.html accessed 2019.
- Nasief, H., W. Hall, D. Schott, S. Klawilowski, C. Cheng, B. Erickson, and X. Li. "Delta-Radiomics of Daily CTs Acquired During Chemo-Radiation Therapy of Pancreatic Cancer." Medical Physics, vol. 45, no. 6, pp. E140-E140. WILEY, 2018.
- Nasief, H., and X. Li. "A Machine Learning Process for Delta Radiomics." Medical Physics, vol. 45, no. 6, pp. E519-E520. WILEY, 2018.
 Turrini O, Schmidt CM, Moreno J et al (2009) Very high serum CA 19-9 levels: a contraindication to
- pancreaticoduodenectomy? JGastrointest Surg 13(10):1791–1797
- Kondo N, Murakami Y, Uemura K et al (2010) Prognostic impact of perioperative serum CA 19-9 levels in patients with resectable pancreatic cancer. Ann Surg Oncol 17(9):2321–232
 Nasief, H., Zheng, C., Schott, D., et al., Delta-radiomics: a machine learning process for early prediction
- of treatment response of pancreatic cancer, nature precision oncology, 3(1), 25-35,2019. doi: 10.1038/s41698-019-0096-z
- Fave X., el al. Using Pretreatment Radiomics and Delta-Radiomics Features to Predict NonSmall Cell Lung Cancer Patient Outcomes, International Journal of Radiation Oncology Biology Physics, vol. 98, no. 1, p. 249, 2017.
- Zhang, L. et al. IBEX: An open infrastructure software platform to facilitate collaborative work in radiomics. Med. Phys. 42, 1341–1353 (2015).
- Nasief, Haidy et al. "Improving Treatment Response Prediction for Chemoradiation Therapy of Pancreatic Cancer Using a Combination of Delta-Radiomics and the Clinical Biomarker CA19-9." Frontiers in oncology vol. 9 1464. 8 Jan. 2020, doi:10.3389/fonc.2019.01464
- Gilles R., Kinahan P., and Hirack H.; Radiomics: Images Are More than Pictures, They Are Data; Radiology; 2016; 278:2, 563-577.
- Yanagisawa A, Ohtake K, Ohashi K, Hori M, Kitagawa T, Sugano H, Kato Y, Frequent c-Ki-ras oncogene activation in mucous cell hyperplasias of pancreas suffering from chronic inflammation. Cancer Res. 1993 Mar 1: 53(5):953-6
- Distler, M., Aust, D., Weitz, J., et al., Precursor Lesions for Sporadic Pancreatic Cancer: PanIN, IPMN, and MCN, BioMed Research International, 2014

CONTACT INFORMATION

Haidy Nasief: hnasief@mcw.edu : X. Allen Li, ali@mcw.edu