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INTRODUCTION

Multi-criteria optimization (MCO) is a useful tool which assists the
treatment planning process in radiation therapy. MCO allows the
treatment planner to explore a given patient’s feasible dosimetric
trade-offs. MCO has been studied extensively and many methods for
exactly generating the range of dosimetric trade-offs (the Pareto
surface) have been implemented for radiation therapy. Since most
MCO algorithms have historically operated by iteratively, inversely
optimizing the underlying MCO problem to exactly sample the Pareto
surface without error, there has been little research into Pareto
surface similarity metrics. Instead, most previous Pareto surface
comparison research has focused on evaluating which of the Pareto
surfaces is superior . This type of evaluation is not as useful for
determining the similarity between the Pareto surfaces, which is more
relevant when comparing fundamentally different MCO generation
algorithms, such as emerging deep learning prediction methods.

AlM

To develop and compare several Pareto surface interpolation similarity
metrics using theoretical Pareto surface examples as well as a Pareto
surface generated from a previously developed prostate MCO dose
prediction model.

RESULTS

Convergence within 1% of each metric’s asymptotic value is typically achieved
at approximately 50 and 80 samples per barycentric dimension for the RMSE
and the ANPD, respectively. Calculation requires approximately 50
milliseconds and 3 seconds to achieve convergence for the RMSE and the
ANPD, respectively, while the APD always requires much less than 1
millisecond. The APD is mathematically invariant to upsampling, which
heavily decreases time costs. Additionally, the APD values closely resembled
the ANPD limits, while the RMSE limits tended to be more different.

For the two-dimensional cases, the average APD value, ANPD asymptotic
value, and RMSE asymptotic value were 0.543, 0.439, and 0.668, respectively,
with standard deviations of 0.258, 0.199, and 0.194, respectively. Case-by-
case, relative to the ANPD asymptotic value, the average APD value and
RMSE asymptotic value were 130% and 171%, with standard deviations of
62% and 88%. A two-sided paired t-test indicates that these values are
significantly different (p<10). These results suggest that the APD is a closer
approximation to the ANPD limit than the RMSE limit, although the APD is
still somewhat different from the ANPD asymptotic value. The average
calculation times for the ANPD and the RMSE at their asymptotic values were
8.9 ms and 0.4 ms, respectively, with standard deviations of 8.2 ms and 2 ms
and maxima of 62.0 ms and 15.9 ms, respectively. The APD calculation times
were always below 0.1 ms.

Comparison of Pareto Surface Interpolations for

P.J. Jensen 2, J. Zhang', and Q.J. Wu'-2
'Duke Cancer Institute, Durham, NC
°Duke University, Durham, NC

METHODS

For all metrics studied here, the Pareto surfaces for comparison are treated as simplicial
complexes, with each vertex of each simplex defined by the values of each dosimetric objective
within the vertex’s corresponding plan. To improve metric robustness, each simplex is upsampled
in its barycentric coordinates, where the number of samples taken per coordinate needs to be
determined based on experimental convergence rates. Three Pareto surface metrics are
considered in this study:
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2.

3.

Root-mean-square error (RMSE):
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where X; is a point on Pareto surface X, Jiyy is the mean displacement between surfaces X and Y,
s is the number of samples taken per barycentric coordinate, and S(X) is the simplicial complex
spanned by linearly interpolating the points sampling surface X. For theoretical analysis, 10,000
two-dimensional simplex pairs were generated to test many different combinations of relative
size and orientation such that none of the pairs are geometrically equivalent. Additionally, to

estimate the applicability to real cases, one three-dimensional case from prostate MCO dose
predictions is included, with PTV Dgg,,, bladder D,s,,, and rectum D, representing the MCO

objective dimensions.
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Figure 2: Sample distances as a function of the number of intra-simplex samples per

barycentric coordinate (left) and the times required to compute these distances (right)

for the 2D (top) and 3D (bottom) cases.
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Figure 3: Samples required to achieve convergence within
1% of the metric’s asymptotic value for all 2D test cases
for the RMSE (top) and ANPD (bottom). Pairs are
separated by their lengthwise shift relative to each other.
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Figure 1: Depiction of the various distances which contribute to the RMSE (top left), APD (top right),
and both averages in the ANPD (bottom left and bottom right), after acquiring three samples per

CONCLUSIONS

In this study, we have presented, compared, and
analyzed several Pareto surface similarity metrics for
use in MCO prediction assessment. Based onour
analysis, we believe that the average nearest-point
distance (ANPD) is the most suitable metric for Pareto
surface comparison, with metric convergence being
reached at approximately 80 interior samples per
barycentric dimension per simplex. When possible, it
is recommended to use the ANPD to compute the
most accurate and appropriate distances because the
ANPD formulation exactly represents the similarity
between Pareto surfaces. However, the average
projected distance (APD) may be more useful in time-
sensitive applications due to its much higher
computation speed.
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