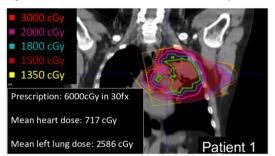


Multi-modality imaging of treatment response after stage III non-small cell lung cancer radiotherapy

HM Young^{1,2,3}, O Chau^{1,2}, K Burgers³, TY Lee^{1,3,4}, FS Prato^{1,4}, G Wisenberg^{1,4}, S Gaede^{1,2,4}

(1) Western University, London, ON, CA, (2) London Regional Cancer Program, London, ON, CA, (3) Robarts Research Institute, London, ON, CA, (4) Lawson Health Research Institute, London, ON, CA

INTRODUCTION


- Radiation therapy for non-small cell lung cancer is known to cause cardiac and lung toxicity in many patients^{1,2}
- Multi-modality imaging can be used to assess the response of both the tumour and surrounding healthy tissue after radiation therapy (RT)
- Imaging may also be used to develop patient-specific strategies for minimizing toxicity risk, such as ventilation-guided treatment³

PURPOSE

To perform comprehensive functional imaging assessments of the lungs, heart, and tumour before and after radiation therapy for non-small cell lung cancer (NSCLC) in 2 patients

METHODS

 Two Stage III NSCLC patients with primary tumours in the left upper lobe were enrolled; Patient 1 has coronary artery stents, and Patient 2 has no previous cardiac history

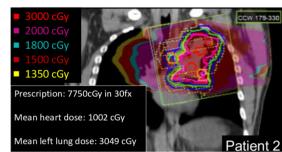


Figure 1. The radiation dose distribution delivered to each patient

Baseline Imaging	Radiation Therapy	Follow-up Imaging (6 weeks)
DCE-CT scans (rest and stress) PET imaging with glucose suppression	30 fractions RT	DCE-CT scans (rest and stress) PET imaging with glucose suppression

Figure 2. Study timeline for imaging at baseline and after radiation therapy

Image Acquisition

- Two dynamic contrast-enhanced (DCE) scans were performed on the GE Revolution CT scanner: one at rest and one under adenosine-induced stress
- PET images were acquired on a Siemens 3T hybrid PET/MR scanner using glucose suppression Image Analysis
- Perfusion analysis of the heart and tumour was completed using CT-Perfusion5 software (GEHC).
 Myocardial perfusion reserve was calculated as the ratio of blood flow of stress/rest scans.
- End-inspiration and end-expiration CT images were non-rigidly registered using Elastix⁴, and ventilation was calculated using an established density-based method⁵
- Myocardial FDG increase factor was determined as the ratio of mean SUV_{bw} follow-up/baseline using the standard six-segment model, tumour mean SUV_{bw} was computed in MIM software.

RESULTS

Table 1. Measurements of PET uptake in the heart and tumour before and after treatment

Table 11 Medeal of 11 E1 apraire 11 the Healt and taillean before and after the								
FDG Uptake (SUVbw)		Left Circumflex		Left Anterior Descending			Right Coronary	Tumour
		basal		mid	basal	mean SUVbw		
		lateral		lateral	septal	septal	septal	SOVDW
Patient 1	baseline	1.92	1.56	1.02	1.33	1.46	1.63	11.74
	Follow-up	3.45	3.28	2.6	3.25	4.11	3.44	4.75
FDG increase factor		1.8	2.1	2.55	2.44	2.82	2.11	
Patient 2	baseline	1	0.56	0.21	0.73	1.03	1.21	13.1
	Follow-up	1.78	1.52	1.02	1.41	1.92	1.97	4.37
FDG increase factor		1.78	2.71	4.86	1.93	1.86	1.63	

Table 2. CT measurements of specific ventilation and perfusion in the irradiated lobe before and after treatment

		Specific Ventilation	-	
		(mean)	(mean +/- SD)	
Patient1	Baseline	0.338	264.9 +/- 365	
	Follow-up	0.156	373.65 +/-347	
Patient2	Baseline	0.300	277.9 +/- 249	
	Follow-up	0.229	470.8 +/- 364	

Table 3. DCE-CT measurements of myocardial perfusion reserve before and after treatment

Myocardial perfusion reserve		Left Circumflex		Left Anterior Descending			Right Coronary
		basal	mid	apical	apical	mid	basal
		lateral	lateral	lateral	septal	septal	septal
Patient1	Baseline	1.2	1.55	1.34	1.58	1.74	2.07
	Follow-up	1.77	2.28	1.07	1.65	2.1	1.74
Patient2	Baseline	2.61	2.27	2.39	2.43	2.78	2.81
	Follow-up	1.37	1.71	1.8	1.66	1.63	1.41

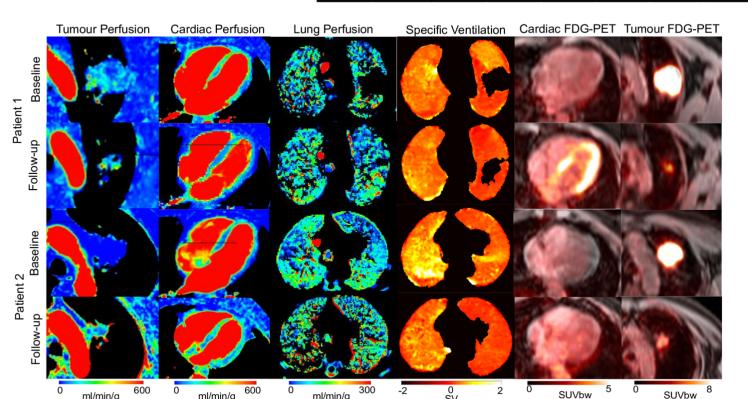


Figure 2. Representative slices from the multi-modality functional imaging acquired for patient 1 (top 2 lines) and patient 2 (bottom 2 lines). Tumour perfusion (column 1), cardiac perfusion (column 2), lung perfusion (column 3), specific ventilation (column 4), cardiac FDG uptake (column 5) and tumour FDG uptake (column 6) are shown.

DISCUSSION

- This study established a protocol for early assessment of radiation toxicity, tumour response, and heart and lung function simultaneously using multimodality imaging, including FDG-PET and volumetric CT
- The CT myocardial perfusion reserve measurements suggest a different response in the patient with previous coronary artery disease compared to the patient with no cardiac history
- These results suggest that these methods are sensitive to changes 6 weeks after treatment and may suggest an acute inflammatory response in both the lungs and heart
- This data will aid in the design and evaluation of radiation techniques that better spare the heart and functional lung in patients with thoracic malignancy.

CONCLUSIONS

- This study demonstrated the feasibility of collecting extensive functional imaging data with two imaging sessions before and after RT for Stage III NSCLC
- This protocol may be used to provide important patientspecific information for clinical decision making

REFERENCES

1. Atkins et al. J Am Coll Cardiol. 2019 2. Bradley et al. Oncol. 2015, 3. Yamamoto et al. Radiother Oncol 2016; 4 Klein et al, IEEE Trans Med Imaging 2010; 5 Guerrero et al, Phys Med Bio 2006

ACKNOWLEDGEMENTS

Tony Wales, Anna MacDonald, Chantelle Graf, John Butler and Heather Biernaski performed image acquisition. This work was made possible by funding from CIHR, NSERC, and the Lawson Internal Research Fund

CONTACT INFORMATION

Heather Young (hyoung44@uwo.ca),
Oi Wai Chau (ochau@uwo.ca),
Dr. Stewart Gaede (Stewart.Gaede@lhsc.on.ca)