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INTRODUCTION

MRIGART (MR Image-Guided Online Adaptive RT) is very useful
for treating abdominal cancer by 1) adapting the treatment plan, 2)
real-time MRI 2D-CINE imaging, and 3) gating by tracking tumor
position on 2D-CINE.

How to evaluate each adapted plan’s quality is an unsolved and
very important question. The online plan adaptation workflow does
not allow sufficient time to manually adjust plan optimization
settings and seek optimal plan quality for each individual plan. It is
important to quickly test the quality of the adapted plan against the
previous knowledge of high-quality, off-line plans.
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Fig. 1: MRIGART workflow and the average time by each step.

AIM

ANN models were developed to predict 3D dose distributions,
enabling the evaluation of online adapted plan quality to better

inform adaptive decision-making in MRgRT. Given the contoured
structures GTV, PTV and OARs (stomach, duodenum, small bowel,
large bowel, spinal cord, liver, kidneys, etc.), to directly predict the
3D dose distribution in the GTV, then compute the DVH metrics
V95 and D95.

METHOD

Over 300 treatment plans from 53 abdominal cancer patients
undergoing linac-based MRgRT were analyzed. ANN models were
developed to predict per voxel dose inside the GTV using input
variables related to patient anatomy and target/OAR relationships.

The models were designed to be simple (two nodes in a single
hidden layer) in order to avoid overfitting. Beam related variables
such as beam angles or fluence are not included as input
parameters to enable 3D dose prediction using only target and
OAR geometry for guiding treatment planning. Five inferior plans
identified by the models were manually re-planned to confirm if plan
quality could be improved.

METHOD & RESULTS

Rationale and top-level study design considerations:
The shallow ANN model (Fig. 2) is a great choice for plan quality evaluation:

1. It does not require a large amount of training datasets. This is very important to
avoid over-fitting the limited training datasets.

2. It is computationally efficient, does not require a GPU, and can be easily
integrated into current clinical tools.

3. With the novel data preprocessing procedure, high-level relationships of the OARs
and tumor target are effectively presented by the variables input into the ANN
models. The overall prediction accuracy is greater than complex deep-learning
models (which requires a much larger amount of training datasets).

Key contributions:
1. The idea of using a simple and shallow ANN model for 3D dose prediction.

2. The data pre-processing procedure to extract geometrical information per voxel,
and high-dimensional relationships between the OARs and GTV/CTV. See the list
of model input parameters in Table 1.

3. Using both per-voxel information and high-dimensional information into ANN
model prediction.

4. Allinput parameters are derived from target and OAR geometries. Beam related
variables such as beam angles or fluence are not included. In this way, the ANN
prediction model can be used before the actual beam plan is devised and
therefore could be useful to guide treatment planning.

Data preparation:

The total 310 plans (50 simulation, 260 adapted) were separated into training and
testing groups as follows: the 53 patients were split into ten groups of five and one
group of three, then each group was cycled through as the test group. For each
iteration of the cross validation, all plans from the test group patients made up the
testing data while all the plans from the other ten groups served as training data. The
cross validation was done on a patient-by-patient basis instead of a plan-by-plan
basis to avoid testing the models on any plan coming from a patient whose plans
were already used for model training.

Model training:

Our model training process is shown in Fig. 3. The trained model was applied to
detect the inferior plans, which were then removed from the training datasets before
the model was retrained and thus refined.

Performance evaluation:

The trained model was applied to predict 3D dose in the tumor target on all plans
from the 5 patients that were not used for training in each cross-validation iteration.
Dose prediction errors were computed and analyzed. Dosimetric metrics V95, V100
and D95 were computed on the predicted 3D dose distribution and compared to the
ground truth values. This sequence was repeated until all 53 patients cycled through
the test group and all results were collected.
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Fig. 2: The designed ANN model, | Fig. 3: Process flowchart for ANN model training
which has only 3 layers and 21 total | and testing.
nodes.

RESULTS

The dose prediction error and the absolute error were 0.1 £ 3.4 Gy (0.1 £ 6.2%)
and 3.5 + 2.4 Gy (6.4 + 4.3%), respectively. Plan metric prediction errors were -
0.1 £1.5%, -0.5+2.1%, -0.9 £ 2.2 Gy, and 0.1 + 2.7 Gy for V95, V100, D95, and
Dmean, respectively. Plan metric prediction absolute errors were 1.1 £ 1.1%, 1.5
t1.5%, 1.9 £ 1.4 Gy, and 2.2 £ 1.6 Gy. Approximately 10% of the plans studied
were clearly identified by the prediction models as inferior quality plans needing
further optimization and refinement. Manual replanning of 5 of such inferior plans
increased GTV V95% by 5% on average.
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Fig. 5: Results for (a) V95, (b) V100 predictions calculated from the model’s 3D dose
predictions. The 45° dashed lines in each plot represent where the predicted and actual values
are equal. The linear fit line and coefficient of determination (R2) are included. The outside
boundary lines represent the 95% prediction interval. Plans identified as inferior during model
training and refinement are labeled with *.
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Fig. 4: Three axial slices (inferior, center, and superior of GTV) of planned dose,
model predicted dose, and ADose of a representative patient plan (SBRT: Rx =
50 Gy, OARCRIT constraint = 36 Gy). All OARs (stomach, duodenum, small
bowel, large bowel, and spinal cord) are shown in white. The prescription
isodose lines are shown in blue for the planned and predicted dose views. Dose
prediction errors = 0.7 = 3.9 Gy, absolute errors = 3.3 + 2.3 Gy. The plan
metrics (planned/predicted) are V95 = 90.4%/88.5%, V100 = 86.8%/85.1%,
D95 = 42.6Gy/41.4 Gy, Dmean = 57.2Gy/56.6 Gy.

CONCLUSIONS

The developed ANN models can accurately predict 3D dose distributions and
overall plan guality metrics for the adapted plans. The models are useful to
identify inferior plans and recommend adjustments in planning optimization.
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