Inter-fractional Motion is Not a Predictor of Delivery Accuracy in Liver Stereotactic Body Radiation Therapy

Physics and Astronomy Department, Radiation Oncology Physics Department, University of Calgary, Alberta, Canada

Kuznetsova S*, Sinha R, Ploquin N, Thind K

CALGARY

Introduction

- Liver SBRT is characterized by high biological effective dose and steep dose gradient. Therefore, assessment of delivery accuracy is paramount.
- Inter-fractional motion is an indirect and commonly used approach in the treatment margin quantification.
- The direct assessment of inter-fractional motion's approximation of liver SBRT delivery accuracy has not been previously conducted.
- Purpose: To measure the influence of Inter-fractional motion on geometric delivery accuracy in liver Stereotactic Body Radiation Therapy (SBRT) using advanced MRI technique.

Materials and Methods: Direct Evaluation of **Delivery Accuracy**

Geometric Centre of mass shift between planned dose target and visualized region of actual delivery

Part I: Primovist®- MRI scans following liver SBRT allow for direct visualization of radiation dose deposition in the form of hypo-intensity. We developed a framework for processing of these MRI scans and then quantified the geometric centre of mass shift between auto-segmented hypo-intensity and original target as defined on pretreatment planning CT; the application of this approach was performed on 15 liver SBRT patients.

Materials and Methods: Inter-fractional Motion Assessment

Part II: The inter-fractional motion was evaluated for the same 15 patient cohort using Cone Beam CT (CBCT) obtained at each fraction. Each CBCT was registered to the pre-treatment simulation CT to calculate the voxel-based shifts of the liver structure, which were averaged over all of the simulation CT-CBCT pairs.

Part III: The inter-fractional motion (averaged CT-CBCT pairs) were compared against the directly evaluated delivery accuracy (CT-MRI pair) in three directions: left-right, anteroposterior and inferior-superior.

Results: Correlation Between Inter-fractional Motion and Delivery Accuracy

	Left-right	anteroposterior	inferior- superior	3D Vector Magnitude
Delivery Accuracy (mm)	1.5 (1.3)	2.6 (1.7)	2 (2.7)	4.4 (2.3)
Inter-fractional Motion				
PTV (mm)	2.2 (0.9)	2.1 (1)	2.7 (1.1)	4.8 (1.7)
Liver (mm)	2.2 (1.4)	2.4 (0.9)	3.3 (2)	5.6 (2.8)

Table: Delivery accuracy results evaluated using post-SBRT MRI, and Interfractional motion results for the PTV and Liver structures.

Discussion & Conclusion

- This study was able to quantify the delivery accuracy of liver SBRT using a novel framework.
- This study also assessed the correlation of the quantified inter-fractional motion against delivery accuracy.
- The inter-fractional motion results showed the highest shifts of both structures in the inferiorsuperior direction.
- · Our direct evaluation of delivery accuracy showed direction with the highest delivery accuracy deviation in the anteroposterior direction.
- All of the |CC|s were below 0.25, hence suggesting a lack of correlation between inter-fractional motion and actual delivery accuracy, which is counterintuitive to previous understanding.

Anteroposterior

 CC_{PTV} =-0.14

 $CC_{liver} = -0.03$

3D Vector Magnitude

 CC_{PTV} =-0.22

 $CC_{liver} = -0.18$

XX

Alberta Health

Svetlana Kuznetsova Email: skuznets@ucalgary.ca **University of Calgary** Alberta, Canada

