

Application of Fast Inverse Dose Optimization to Intensity Modulated Proton Therapy

M. MacFarlane^{1,*}, S. Mossahebi¹, J. Z. Chen², N. Lamichhane¹, M. Guerrero¹

¹Department of Radiation Oncology, University of Maryland Medical Center, Baltimore MD, USA ²Department of Physics & Engineering, London Regional Cancer Program, London ON, Canada *Michael.MacFarlane@umm.edu

INTRODUCTION

- Optimization of intensity modulated proton therapy (IMPT) treatment plans is computationally demanding to perform.
- This is a result of the repeated dose and objective function calculations perform during optimization.
- Recent GPU/CPU parallelization has helped improve the computational efficiency of these calculations considerably, but further acceleration is still welcome.

Question: Could modifying the objective function used in treatment optimization also improve the optimization speed?

METHOD

<u>Proposal:</u> Use the quadratic Fast Inverse Dose Optimization (FIDO) objective function [1]:

$$f(\vec{\tau}) = p_{ptv} \sum_{x \in PTV} \left(\sum_{i} \boldsymbol{d}_{xi} \tau_{i} - d_{pres}(x) \right)^{2} + \sum_{x \in OAR} p_{oar}(x) \sum_{i} \boldsymbol{d}_{xi}^{2} \tau_{i}^{2}$$

Note: spatially varying d_{pres} and p_{oar} are used to enforce non-quadratic objectives (e.g. min, max, dose-volume)

Motivation for this: Through Taylor Series expansion, this objective function and its derivatives can be condensed to:

$$\begin{bmatrix} f \\ \nabla f \end{bmatrix} = \begin{bmatrix} \vec{\tau}^T \\ \mathbf{I} \end{bmatrix} (\alpha \vec{\tau} - \vec{\beta}) + \begin{bmatrix} f_0 - \vec{\tau}^T \vec{\beta} \\ 0 \end{bmatrix}$$

Advantages of this matrix equation:

- 1. Yields both the value and the derivatives simultaneously.
- Number of operations performed when computing the matrix equation is often orders of magnitude smaller than computing the conventional objective function value alone.

Evaluation:

- A planning study was performed on 15 patient datasets.
- MFO IMPT treatment plans were optimized in MATLAB using the modified and unmodified objective functions.
- Same planning objectives were used in both optimizations.
- Plan quality and optimization performance was compared.

RESULTS

Fig 1. DVH and dose distributions of standard (dashed) & FIDO (solid) optimized plans.

(A) Advanced breast plan. (B) Liver plan (C) Simple prostate plan (D) Ipsilateral head-and-neck plan

Description	# of Beams	# of Spots	Non-zero dose matrix, $d_{x,i}$, elements [x10 6]	Optimization Time (# of Iterations)		Speed
				Standard Method	FIDO	Enhancement
TG 119 Phantom	1	2,463	5.0	24.2s (181)	0.4s (29)	69.1
Simple Prostate	2	3,916	18.9	23.5s (76)	0.5s (4)	47.0
Advanced Prostate	3	18,376	70.3	74.8s (206)	14.4s (85)	5.2
Advanced Breast	2	26,597	65.8	240.0s (540)	41.5s (181)	5.8
Bronchus	3	9,536	31.0	99.9s (404)	2.9s (49)	34.3
Liver	3	5,668	19.3	21.4s (40)	0.8s (11)	27.8
Bilateral HN	5	19,397	40.2	25.0s (96)	9.6s (29)	2.6
Rt. Temporal Lobe	3	9,704	21.7	93.3s (435)	4.3s (104)	21.7
Pancreas	3	26,877	103.7	157.9s (274)	50.6s (35)	3.1
Esophagus	3	24,455	72.5	135.6s (291)	22.6s (75)	6.0
Vagina	4	25,209	97.3	56.0s (107)	51.5s (69)	1.1
Bladder	3	42,509	183.7	172.2s (189)	76.2s (40)	2.3
Ipsilateral HN	3	14,421	34.4	71.4s (146)	9.0s (111)	7.9
Lt Lung	2	1,059	2.7	52.8s (218)	1.3s (122)	39.7
Lt Arm Sarcoma	2	13,026	29.2	27.5s (39)	5.8s (80)	4.7

Table 1. Summary of the 15 optimization problems and each optimization algorithm's performance.

DISCUSSION

- On average (standard deviation), the FIDO algorithm enhance the optimization speed by 18.6 (20.7) fold, taking 19.4s (23.9s) over 68 (48) iterations to converge to a solution while the conventional algorithm took 85.0s (65.7s) over 216 (149) iterations to converge its solution.
- Plans of similar or better quality were obtained with the FIDO algorithm.
- Further speed enhancement could be achieved with GPU/CPU parallelization.

Future Work: Apply algorithm to robust and multi-criteria optimization, GPU/CPU parallelization.

ACKNOWLEDGEMENTS & REFERENCE

This work was supported by the University of Maryland Medical System. IRB approval was obtained from the University of Maryland (HP-00089887).

[1] MacFarlane M, Hoover D, Wong E, Goldman P, Battista JJ, Chen JZ. A fast inverse direct aperture optimization algorithm for intensity-modulated radiation therapy. Med. Phys., 46: 1127-1139. doi:10.1002/mp.13368