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Algorithm 1 {Ny,} Fractionation Schedule Optimization
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: function OBJECTIVEFUN(u, N1,..., Ny)
There are emerging interests and developments of other radiation types than photons . return M N T —  (Tow)  diag(8)(Tiw))  +
such as protons and carbon ions, owing to their unique biological and dosimetric Pia (Z?il Ny — 1) In?/Ty.
characteristics that are distinctive from photons [1,2]. For example, protons have : function VALUEFUN(V Nar) 1> Define the value function to
superior dosimetric effects owning to their Bragg peaks, and neutrons and carbon : optimis Hhe M ' :
ions have superior biological effects (higher relative biological effect) compared to .}y +—LOWERLEVELSOVER(u'®, Ny, ..., Nyg)
photons. It is unclear which modality is optimal for specific patients and current efforts . return OBIZCTIVEFUN(uj, . N1,..., Ny)
to find an optimal modality or optimal combinations of multiple modalities are mostly . Ni,...,Ni <+ TrUsTREGIONCONSTR(VALUEFUN, N . NI,
empirical or anecdotal [3,4]. L Ny <25, {N; = 0H)
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Algorithm 2 Fluence Map Optimization with Fixed Parameters and Frac-
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The purpose of this study is to develop and test the feasibility of a systematic 3. Initialize: k=0
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optimal combination of the modalities and their fractionation regimens, which lead to :
the maximum feasible biologically effect (BE) to the tumor. Our approach allows a Lo
single modality as a potential solution and therefore, a correct optimal modality gets 5 i 51
identified if a single modality leads to a larger tumor BE than multiple modalities y [ Mot
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Consider a treatment planning problem with M modalities with u,,, beamlet intensities and u’alk)j— projg, (I1'u)
N, fractions of each modality m. We utilize bi-level optimization, which consists of the . lor -i € Inax Lluv I
upper level (Algorithm 1), where N_, is optimized using the optimal u,, found in the lower - [ 9 i“* % )(}; ;”L Dhwy < Cruac}
level for given N,, (Algorithm 2). For the maximum number of fractions, N, ,,. allowed, the - m proja,
upper level optimization can be written as . e
min V(Ny,...,Ny) P sl — |
Nyp,...Np u* o u'k

SUbJQCt to : return u*
: Output: u*
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Nm < Nmax,Nm > U,m = 1,...,M,

m=1

We applied the framework
to the simple 2D head-and-
neck phantom shown in
Figure 1 with two different
m=1 ags
where V(Ny, ..., Ny,) is the value function of {N,,}_, defined as modalities M1 and M2
F(fuz(Ny, .., Ny )M _1, Ny, ..., Ny ). Each optimal fluence map {ug, (Ny, ..., Np)Y_, is assuming that M1
obtained by solving the following problem in the lower level: represents 6 MV photons.
For M2, we investigated the
muin & (Tu) — f(Tuw) results with a dose
Sub]ect to deposition matrix of 250
S i i(Hiy) < MeV protons and various
o (') D'(i'n) Cmea“/max' - a/B ratios of the tumor and
where T and H are dose deposition matrices for the tumor and OAR of all modalities OAR to capture the effect

1< Z Nm SNmax,NmEU,m=1,...,M,
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(stacked up together), a, (y,) and D are the radiobiological parameters in the LQ model of different biological
(BE = aNd + BNd2, d is dose (=Tu for tumor, Hu for OAR), N is the number of fractions, a characteristics of M2. Figure1 Phantom geometry

and [ are linear and quadratic radiobiological coefficients) arranged appropriately, and C We also varied the ratio r , which is defined as ag /0, 10 0.8 —

H H ? umor? :

is the BE constraint for OAR. 1.2 for M2 to capture the different biological effect of M2 between the
tumor and OAR. This means that when r<1, M2 is more effective in

This minimization is solved iteratively by updating auxiliary variables and u using non- damaging tumor than OAR. Similarly, when r>1, M2 is more effective
convex relaxation to preserve the non-convex structure of the problem. The upper and in damaging OAR than tumor. We va,ried tumor,doubling time Td.

lower level optimization is shown in Algorithm 1 and Algorithm 2 respectively. The total number of fractions was constrained to be less than 25.

RESULTS

The convergence of the upper level algorithm for the fractionation optimization is shown in Figure 2. The
color of the dots represents a different initial guess, e.g., green dots have the initial guess of (N1, N2) =
(1, 24). Each dot represents an iteration. Blue initial guess (N1=24, N2=1) leads to the optimal solution

in this case.
Level Sets of V(N1.N2)

Figure 2 Convergence of the upper level
fractionation optimization. The level sets
represent true objective function values obtained
heuristically for two modalities. Each dot
represents an iteration and different color
represents different initial guess used in the
algorithm. Initial guess starts at the corner and
converges to an optimal value in the middle. The
final solution is the minimum of the 4 solutions
from 4 different initial solutions.
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To evaluate the efficacy of the proposed multi-modality optimization framework compared to current
practice, we introduce the following evaluation criteria.

pObj_conv = BE using optimal (N1,N2)/BE using conventional 25 fractions * 100
pObj_single = BE using optimal (N1,N2)/BE using optimal N1 * 100

pObj_conv is the percentage improvement in BE of the tumor in the plan using the multi-modality
optimization framewaork relative to that in the conventional plan using M1 only with the standard
fractionation (N1 = 25 fractions assumed in this study). pObj_single is the percentage improvement in
BE relative to the plan with M1 only and the optimized fractionation schedule rather than 25 fractions
fixed. Note that we can compare the tumor BE increase only since OAR BE was constrained to be at
the tolerance for all plans used in this study.

The tumor BE increase was 7.8-22.9 % compared to a single modality (M1) with 25 fractions fixed, and
5.7-7.9% compared to a single modality with optimal fractionation. The range in the BE increase
depends on the tumor doubling time and radiobiological parameters used (alpha2 and r). The results
are shown in Table 1 below. When r<1 (M2 damages tumor more than it damages OAR), the optimal
solution includes more fractions from M2 compared to r=1, which also agrees with the clinical intuition.

Dual modality Single modality | pObj_single | pObj_conv
(days) optimal (N1, N2) optlmal (N1) (%) (%)
(2,2) 105.7 122.9 Table 1 Optimal BE
(6, 6) 106.8 110.1 improvement with various
(13, 12) 107.9 108.2 tumor doubling tr_me (Td) :
parameters are fixed at a2 =

(12, 12) 107.8 107.8 0.35/Gy and r=1.0.
(12, 12) 107.8 107.8

- Dual modality Single modality | pObj_single | pObj_conv
timal (N1, N2 timal (N1 (%) (%
guiinall SEOuH T ( ) ) Table 2 Optimal BE

(7,11) 104.7 107.9

1.2 (3, 3) 102.0 104.7 5 days and a2 = 0.35/Gy

improvement with various r :
1.0 (3,4 103.2 105.7 parameters are fixed at Td =
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CONCLUSIONS

We successfully set up a framework to optimize treatment plans
involving multiple modalities and developed the efficient, bi-level
optimization algorithms to solve the resulting non-convex, mixed
integer problem [5]. The results of our numerical simulations on a
simplified 2D phantom, where the clinical intuition can be readily
drawn, validate our approach in the clinical setting showing the
promise of our mathematical framework for further clinical
investigation. We note that the results shown in this study are not
directly relevant to the clinical setting as we applied the theoretical
values to the input parameters in the phantom rather than clinically
relevant parameter values and patient datasets.

Our hope is that the systematic approach we took opens the door

to new opportunities to consider multiple radiation types to best
optimize an individual patient plan. Our method can also be used to
optimize the brachytherapy and external beam radiotherapy, which is
left for future work along with further clinical investigation of multiple
modality optimization in radiation treatment planning.
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