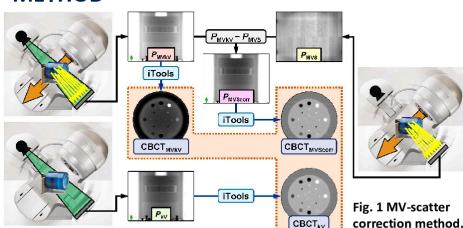


Initial investigation of dose calculation on intra-irradiation cone-beam CT images



H. IRAMINA (iramina@kuhp.Kyoto-u.ac.jp), M. NAKAMURA and T. MIZOWAKI Graduate School of Medicine, Kyoto University, Kyoto, Japan

INTRODUCTION/AIM

- CBCT images acquired during volumetric-modulated arc therapy (VMAT) delivery (intra-irradiation CBCT images) can be utilized for calculating dose-of-the-day.
- However, the image quality was degraded by MV scatter X-rays (MV-scatters).
- The aim of this study was to evaluate VMAT dose calculation accuracy on the intra-irradiation CBCT images with and without MV-scatter correction.

METHOD

MV-scatter correction method

• To correct MV-scatter on the concurrent kilovoltage (kV) projections (P_{MVkV}), the projections consist of MV-scatter only (P_{MVS}) were acquired under the same MV beam parameters and gantry angles, and then subtracted from the P_{MVkV} (P_{MVScorr}).

<u>Phantom</u>

- Anthropomorphic torso phantom (Kyoto Kagaku, CTU-41)
- VMAT plans and kV imaging parameters
- Ten 1-full-arc (10 MV FFF) plans; AcurosXB (v15.6)
- 125 kVp, 1.2 mAs, Half-fan

Reconstruction algorithms (in iTools software)

• Feldkamp-Davis-Kress (FDK), iCBCT (Medium)

CBCT images

- CBCT_{kV}: reference normal CBCT image
- CBCT_{MVkV}: MV-scatter-contaminated CBCT image
- CBCT_{MVScorr}: MV-scatter-corrected CBCT image (FDK recon.)
- CBCT_{MVScorr+i(M)}: MV-scatter-corrected CBCT image (iCBCT recon.)

Evaluation index

- 95% isodose volume on CBCT_{kV} was converted to the structure and recognized as "pseudo-target" (copied to the other images).
- DVH and 3D Gamma analysis (1%/1 mm/threshold 5%)

RESULTS

<u>CBCT-number-relative electron density (CBCT-RED)</u> conversion table

- Multi-energy phantom (Model 1467, Gammex RMI;
 Fig. 2) was scanned by normal (=not concurrent)
 CBCT imaging (125 kVp, 1.2 mAs, Half-fan)
- CBCT-RED table was created from the reconstructed CBCT image, and applied to CBCT_{kV}, CBCT_{MVkV}, CBCT_{MVScorr}, and CBCT_{MVScorr+i(M)}.

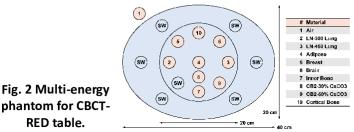
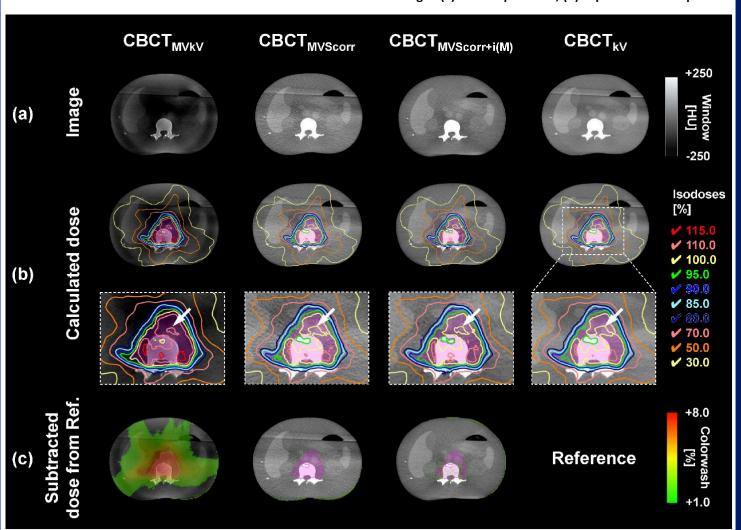



Fig. 3 (a) CTU-41 phantom, (b) experimental setup.

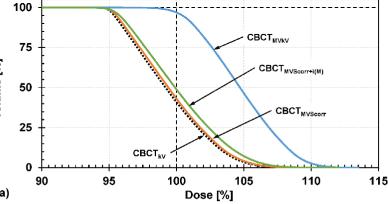
Fig. 4 (a) CBCT images, (b) calculated doses, and (c) subtracted doses from the reference one for Plan #6.

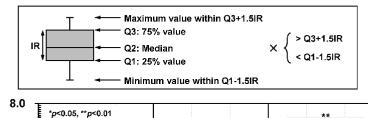
RESULTS (CONTINUED)

Dose calc. on intra-irradiation CBCT image Fig. 4: CBCT images, calculated doses, and subtracted doses from the reference one for

- In visual evaluation, the cupping artifact on CBCT_{MVkV} was corrected on CBCT_{MVScorr} and CBCT_{MVScorr+i(M)} which are comparable with CBCT_{kV}
- The region above 80% doses expanded and 115% dose region was appeared on CBCT_{MVkV}.

Fig. 5: (a) DVH for Plan #6 and (b) differences of DVH indices between $CBCT_{MVkV}$, $CBCT_{MVScorr}$, or $CBCT_{MVScorr+i(M)}$ and $CBCT_{kV}$ All differences of indices for $CBCT_{MVkV}$ were significantly larger than those for the others which were within 1.0% (p<0.01)


 Calculated doses on CBCT_{MVkV} were systematically elevated.


Table 1: Median 3D GPRs

 Doses on CBCT_{MVScorr} or CBCT_{MVScorr+i(M)} showed good agreement with that on CBCT_{kV}.

Table 1 Median 3D gamma pass rate (GPR) of each CBCT image compared to CBCT_{kV}.

CBCT type	Pass rate (1%/1 mm)
CBCT _{MVkV}	70.4% (range: 46.0 – 82.3%)
CBCT _{MVScorr}	99.5% (range: 99.3 – 99.9%)
CBCT _{MVScorr+i(M)}	98.2% (range: 96.0 – 98.8%)

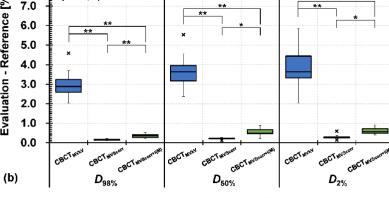


Fig. 5 (a) Dose-volume histograms for Plan #6 and (b) differences of dose-volume indices.

CONCLUSIONS

- To our best knowledge, this study was the initial investigation of the intra-irradiation CBCT images for dose calculation
- The MV-scatters on the intra-irradiation CBCT images from VMAT deliveries were corrected by subtracting MV-scatter maps and the re-calculated doses on the images showed good agreements.
- Dose calculation on the intra-irradiation CBCT can be utilized for adaptive radiotherapy.

ACKNOWLEDGEMENTS

• This work was supported in part by Varian Research Grant and JSPS KAKENHI (Grant no. 19K17265).