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INTRODUCTION CONCLUSIONS

R ES U LTS Figure 1. Example of deep learning-based auto-segmentation (green) and manual
contours (red)

+ In breast cancer patients receiving radiotherapy, Quantitative metrics + In conclusion, the feasibility of deep learning-based auto-
accurate target delineation and reduction of , , segmentation was demonstrated in this study for breast cancer
radiation doses to the nearby normal organs is * Examples of deep learning-based auto-segmentation and manual patients receiving RT after BCS.

important contours are shown in Figure 1. .
i + Although deep learning-based auto-segmentation cannot serve as a
substitute for the experience of radiation oncologists, it has potential

to serve as a useful tool in assisting them.

» Table 1 compares the auto-segmented contours and manual contours for

* However, manual clinical target volume (CTV) and OARs and CTVs using mean DSC and 95% HD.

organs-at-risk (OAR) segmentation for treatment
planning increases physicians’ workload and
inter-physician variability considerably. Qualitative scoring

+ For qualitative scoring, two panels, an expert breast cancer radiation
oncologist panel (n = 11) and a non-expert panel that included residents
and radiation oncologists whose specialty is not breast cancer (n = 15),
answered the following questions after watching an example video:
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+ Here, we evaluated the potential benefits of deep
learning-based auto-segmented contours by
comparing them to manually delineated contours for

1) What score would you give for the differences between manually
delineated contours and auto-segmentation contours? (Difference
scores)

Table 1. Comparison of deep learning auto-segmentation and manual contours of
breast cancer patients. 2) How much do you think auto-segmentation would assist you in real- organs-at-risk and target volumes
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difference and assistance scores

were used for analysis. + Asforregional LN RT plans, there was a considerable difference in the

S ' Lo coverage for regional nodal contours such as axillary lymph node levels
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Furthermore, dose-volume histograms and esophagus, and spinal cord were analyzed.
dosimetric parameters were also analyzed using + The mean absolute differences for all parameters were minimal, showing
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